
F Laplace’s equation: Complex variables

Let’s look at Laplace’s equation in 2D, using Cartesian coordinates:

∂2f

∂x2
+

∂2f

∂y2
= 0.

It has no real characteristics because its discriminant is negative (B2 − 4AC =
−4). But if we ignore this technicality and allow ourselves a complex change
of variables, we can benefit from the same structure of solution that worked for
the wave equation. Introduce

η = x+ iy x = (η + ξ)/2
ξ = x− iy y = (η − ξ)/2i.

Then the chain rule gives
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∂
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= i

(
∂
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)
and the PDE becomes

4
∂

∂η

∂f

∂ξ
= 0

whose solution is straightforward:

f = p(η) + q(ξ) = p(x+ iy) + q(x− iy).

Here p and q are differentiable complex functions; and assuming we wanted a
real solution to the original (real) PDE, we have an additional constraint that
the sum of the two functions must have no imaginary part.

We can formalise this in more standard notation: if we use the (x, y) plane to
represent the complex plane in the usual way, we introduce the complex variable
z = x+ iy. Then its complex conjugate is z = x− iy and the solution we have
just found is

f = p(z) + q(z).

F.1 Cauchy-Riemann Equations

Let’s look at our function p(η) = p(z), which forms half of our “characteristics”-
style solution. It is obvious that

∂p

∂ξ
=

∂p

∂z
= 0

and using the chain rule, this tells us that
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2
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∂x
− 1
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∂y
= 0

∂p
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= −i

∂p

∂y
.

Now if we divide the function into its real and imaginary parts:

p(z) = u(x, y) + iv(x, y)
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where u and v are real functions, we have

∂u

∂x
+ i

∂v

∂x
= −i

∂u

∂y
+

∂v

∂y

This complex equation is equivalent to the pair of real equations:

∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y
.

These are the Cauchy-Riemann equations, and are satisfied by the real and
imaginary parts of any differentiable function of a complex variable z = x+ iy.

In fact in a given domain, u and v (continuously differentiable) satisfy the
Cauchy-Riemann equations if and only if p is an analytic function of z. We
will not prove this here.

(Recall f(z) is analytic ≡ holomorphic within a domain D if, in every circle
|z − z1| < ρ lying in D, f can be represented as a power series in z − z1.)

F.2 General solution of Laplace’s equation

We had the solution
f = p(z) + q(z)

in which p(z) is analytic; but we can go further: remember that Laplace’s
equation in 2D can be written in polar coordinates as

∇2f =
1

r

∂

∂r

(
r
∂f

∂r

)
+

1

r2
∂2f

∂θ2
= 0

and we showed by separating variables that in the whole plane (except the
origin) it has solutions

f(r, θ) = A+B ln r +
∑
n

(an cos (nθ) + bn sin (nθ))(cnr
n + dnr

−n).

(In fact we also discarded some solutions which were not 2π-periodic in θ; these
may be valid in a domain which does not encircle the origin.) Now in these
variables, z = r exp [iθ] so we can also write the solution we found as

f = Real

(
A+B ln z +

∑
n

[
cn(an − ibn)z

n + dn(an + ibn)z
−n
])

meaning that our solution is the real part of a function of z only:

f = Real (g(z)).

Note that g(z) as given here is analytic in any simply connected domain that
does not include the origin; if B = 0 it is analytic everywhere except the origin,
and if additionally dn = 0, it is analytic everywhere.

We have shown that the real solution to Laplace’s equation we had found is
the real part of an analytic function of z = x+ iy in our domain; we can show
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the converse very quickly from the Cauchy-Riemann equations. Consider an
analytic function

f(z) = u(x, y) + iv(x, y)

Then the Cauchy-Riemann equations give

∂u

∂x
=

∂v

∂y

∂v

∂x
= −∂u

∂y
.

Differentiating the first w.r.t. x and the second w.r.t. y gives:

∂2v

∂x∂y
=

∂2u

∂x2
= −∂2u

∂y2
∂2u

∂x2
+

∂2u

∂y2
= 0.

We can solve Laplace’s equation in any domain simply by taking the real part
of any analytic function in that domain.

F.3 Composition of Analytic functions

The composition of two analytic functions is analytic (providing, of course, the
relevant domains are correctly specified): if

f : D1 → D2 and g : D2 → D3

are both analytic, then the composed function

g ◦ f : D1 → D3

is also analytic on D1.

This has important ramifications for the solution of Laplace’s equation in odd-
shaped domains or with boundary conditions which are unsuitable for separation
of variables.

Suppose we are trying to find a real function u satisfying

∇2u = 0 in D1 with u = u(x, y) on ∂D1.

Of course this is equivalent to finding an analytic function f(z) on D1 whose
real part satisfies the boundary condition on ∂D1.

If D1 is an awkward shape, and we can find an analytic function w(z) which
maps it to a more helpful domain D2, then we can define

f = g ◦ w f(z) = g(w(z))

and we are now looking for an analytic function g defined on D2 such that

Real (g(w(z))) = u(z) on ∂D1.

Real (g(w)) = u(z(w)) on ∂D2.
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Example

This is taken from an old UCL exam paper.

Find the solution to Laplace’s equation in the domain D1 given by the whole
(x, y)-plane except for two semi-infinite plates |x| ≥ 1, y = 0. The boundary
conditions on these two plates are

u(x, 0) = 0 on x ≥ 1; u(x, 0) = 1 on x ≤ −1.

The domain looks superficially suitable for separation of variables in Cartesian
coordinates, but the boundary conditions are not suitable: we would need u(x, 0)
to be prescribed for all x for separation to work.

Here we use the map w(z) = z +
√
(z2 − 1). Note that the square root means

this map is not analytic over the whole plane; we need a branch cut at each of
z = 1, z = −1. Given the domain we are trying to transform, it makes sense to
put the branch cuts on y = 0 (or z real) and |x| ≥ 1 (or |z| ≥ 1).

The point z = 0 maps to w =
√

(−1) and we can choose which of the possible
values we take for the sign of the square root here: we choose w(0) = i. This
choice, with the positioning of the branch cuts, determines w(z) everywhere in
our domain – in the diagram I’ve marked the result of each of the square roots
at points around it. So when z = x+iε and x > 1, both roots are positive; when
z = x and |x| < 1, the root at z = 1 has argument i and the other is positive;
when z = x − iε with x < −1, both roots have argument i so the product is
negative, and so on:

r r
−i

++ ii
−

In particular:

w(−1) = −1 w(1) = 1

w(x) = x+ i
√

(1− x2) −1 < x < 1

w(x+ iε) = x−
√
(x2 − 1) x < −1

w(x− iε) = x+
√
(x2 − 1) x < −1

w(x+ iε) = x+
√
(x2 − 1) x > 1

w(x− iε) = x−
√
(x2 − 1) x > 1

Thus the branch cuts in the z-plane map onto the real line in the w-plane: the
left-hand cut maps to (top side) w < −1 and (bottom side) −1 < w < 0, and
the right-hand cut maps to (top side) w > 1 and (bottom side) 0 < w < 1. In
the w-plane we now need to solve Laplace’s equation for a new function v with

v(x, 0) = 1 on x ≤ 0 v(x, 0) = 0 on x ≥ 0.

This new problem is suitable for separation of variables in polar coordinates:
the boundary conditions in terms of r and θ are

v(r, 0) = 0 v(r, π) = 1.

Note that our domain now does not encircle the origin, so we must revisit our
separable solution and include some terms we discarded earlier.
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We look for the form v = R(r)T (θ) and derive the coupled ODEs

r2R′′(r) + rR′(r)

R(r)
= A

T ′′(θ)

T (θ)
= −A.

In the three cases A < 0, A > 0 and A = 0 respectively these yield:

v = (Aµ exp [µθ] +Bµ exp [−µθ])(Cµ cos [µ ln r] +Dµ sin [µ ln r])

v = (aλ cos [λθ] + bλ sin [λθ])(cλr
λ + dλr

−λ)

v = (α+ β ln r)(γ + δθ).

Applying the boundary condition T (θ = 0) = 0 gives the three basis functions

v = sinh [µθ](Cµ cos [µ ln r] +Dµ sin [µ ln r])

v = sin [λθ](cλr
λ + dλr

−λ)

v = θ(α+ β ln r),

and the condition that v must be well-behaved at r = 0 (since the origin is in
our domain) fixes further:

v = αθ +
∑
λ

cλr
λ sin [λθ]

The final boundary condition v(r, π) = 1 gives

1 = απ +
∑
λ

cλr
λ sin [λπ]

which is satisfied with α = 1/π and cλ = 0. Thus we have found

v(r, θ) =
θ

π
.

In order to convert this to a solution to our original problem, we first need to
find the analytic function of which it is the real part. In this case the function
is straightforward:

v(r, θ) =
θ

π
= − 1

π
Real (i[ln r + iθ]) = − 1

π
Real (i lnw)

so the analytic function we need is

g(w) = − i lnw

π
.

Finally we need to convert back to the original variables:

f(z) = g ◦ w(z) = − i

π
ln
{
z +

√
(z2 − 1)

}
and the solution we need is the real part of this:

u(x, y) = Real

(
− i

π
ln
{
z +

√
(z2 − 1)

})
=

1

π
Imag

(
ln
{
z +

√
(z2 − 1)

})
.

In particular, on the “missing line” y = 0, −1 ≤ x ≤ 1, we have

u(x, 0) =
1

π
Arg

({
x+ i

√
(1− x2)

})
=

1

π
arctan

√
(1− x2)

x
.
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