E Separation of variables: a “lucky” method

Let’s look now at the most general constant-coefficient homogeneous linear PDE
of second order:
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If we can eliminate the mixed-derivative term then we have a chance of using
the method of separation of variables.

A

The linear change of variables we were looking at while classifying our equations:
E=ax+ Gt n=yx + ot
gave the mixed-derivative term as
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It is clear that our four variables are more than enough: we can make a choice
under which there is no mixed-derivative term. We’ll look later at how to
optimise the choice.

E.1 The basics

You will all have seen this method before: I will only run through it briefly. We
seek to express our solution as a sum of solutions of the form

[, t) = X(2)T(?).

Substituting this into the governing equation (we’ve made our change of vari-
ables already so there is no mixed derivatives term)
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gives
AX (2)T"(t) + CX"(x)T(t) + DX (z)T'(t) + EX'(2)T(t) + FX (x)T(t) =0

AT" (t) n D1'(t)  CX"(x) EX'(x) P
T(t) Tt —  X(x) X (x)
Now the left hand side of this equation is a function of ¢ only and the right hand
side only depends on x, so they must both be a constant, A\, independent of x
and ¢. This insight gives us two ODEs to solve:

AT"(t) + DT'(t) — AT(t) = 0 CX"(z)+ EX'(z) + (F 4+ \)X(x) =0.

These give us pairs of solutions, coupled through the value of the constant A,
and typically we write the final solution as

ZX (Ans )T (A, ).
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Example: Laplace in plane polars

Laplace’s equation in plane polar coordinates is

20f  Of 0%
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The separable solution f(r,8) = R(r)T() gives the coupled ODEs
r?R"(r) +rR'(r) T"(9)
= A = —
R(r) T(6)

We look at the three cases A > 0, A < 0 and A = 0 separately; and because
we’re in polar coordinates, any solution must be periodic of period 27 in 6.

Positive constant A = \2

r?R"(r) 4+ rR (r) — A*R(r) = 0. gives R(r) = a1 + agr—>.
T"(0) = =N\*T(6) gives T(0) = by cos A0 + by sin A0
and the periodicity condition fixes A to be an integer.
Negative constant A = —p?
T"(0) = p*T(6) gives T(0) = c1e"? 4 coe 10

and now the periodicity condition cannot be satisfied for u # 0.
Zero constant A =0
T"(0) =0 T(0) = dy + d20 dy = 0.
r?R"(r)+rR (r) =0 R(r) =ds+dslnr.
The general solution to Laplace’s equation in plane polars is then:

f(r,0)=A+ Blnr+ Z(an cosnb + by, sinnb)(c,r™ + d,r~").

E.2 Boundary conditions

Of course, Laplace’s equation is also separable (has no mixed derivatives) in
Cartesian coordinates; and a similar procedure produces the general solution

f(a,y) = (ax + B)(vy +9)
+ [ (@ln) cosXe -+ B sin ) N + d(N)e ) dA

+ /(AO\)COS My + B(\) sin \y)(C(\)e*® + D(M)e ) dA

so how do we know which solution to use?

The simple answer is that the boundary conditions are crucial. Any second
order PDE possesses a range of possible coordinates in which it has no mixed
derivatives: and the boundary conditions of the specific problem to be solved
must inform our choice.
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We need the following conditions to be satisfied:

Separable equation
The differential equation must be separable: that is, there are no mixed
derivatives and, if the coefficients depend on 1 and &, then (after multipli-
cation of the whole equation by some function if necessary) the derivatives
w.r.t. n have coefficients which depend only on 7 and those w.r.t. £ have
coefficients which depend only on £. The coefficient of the no-derivatives
term must be at worst the sum of a function of n and a function of &.

0%u 2?2 9%u ?u  0%u
— - ——+-— =0 is OK —5 — 7— +cos(zt)u =0 is not.
otz (t+1)2 922 otz 0x? (xt)
Boundary conditions on coordinate lines
All the boundary conditions in the problem must be located along lines
n = constant or £ = constant. This does include the possibility of a
boundary condition as one variable — oo.

Correct type of boundary conditions
Along a line n = constant, the boundary condition must not involve any
partial derivatives with respect to £; and the coefficients of derivatives
involved in the boundary conditions must not vary with &.

o af o
8%(076) =g(¢) is OK (a;); + ag) (0,6) =0 is not.

The equivalent condition is required of the boundary conditions along a
line & = constant.

Realistically, the boundary conditions are likely to completely constrain the co-
ordinates we use if we wish to use separation of variables; and if the coordinates
that work for the boundary conditions don’t work for the PDE, there’s very
little we can do about it.

Example

[Weinberger p. 70.]
@ + 8211, + @ =0
0x2  0xdy  Oy?
This is a flukey one: it looks like it won’t work but a bit of cunning will get us
there. First we try the standard separable solution:
u=X(z)Y(y) X"(@)Y (y) + X' (@)Y (y) + X (2)Y"(y) = 0
and then look at Y /Y:

Yy _ X"@) | X(@)Y'(y)
Y(y — X@)  X@)Y(y)
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Taking the partial derivative of this equation w.r.t. z (and noting that the left
hand side is independent of z) gives

_d [X"(=) Yy d (X'(2)

' = dx<x<x>>+y<y> da:<X<x>
_ X”’(iv)X(x)—X”(x)X’(w)+Y'(y) (X”(w)X(m)—X'(m)2>
X2(z) Y(y) X2(z) ’

which is separable if we divide by the bracketed term on the right:

_X’”(x)X(!E) X" (z)X'(x) _ Y'(y) — 2\

_ //( !
X" (2)X (z) — X' (x)2 Y(y)

Now we proceed as before: solve
Y'(y) = 2\Y (y) Y(y) = e
If we were to carry on with this equation we would have to solve
X"(x) X (x) — X" (2) X' (x) + 22X " () X (x) — 22X (2)* =0
but now that we know Y, we can return to the original equation:

Yy X)) X@Yh) . X'@) . X@)
Y)  X@) T X@Y() V=X TP X

X(z) = e (acos V3Ax + bsin v3Azx)

and the general solution is

u(z,y) = Z exp [A(2y — z)](ax cos V3Az + by sin v3Az).
A

The moral of this story is: if your boundary conditions look suitable for sepa-
ration of variables, but your equation doesn’t, don’t despair — at least not until
you’ve had a go!
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