E Separation of variables: a "lucky" method

Let's look now at the most general constant-coefficient homogeneous linear PDE of second order:

$$
A \frac{\partial^{2} f}{\partial t^{2}}+B \frac{\partial^{2} f}{\partial x \partial t}+C \frac{\partial^{2} f}{\partial x^{2}}+D \frac{\partial f}{\partial t}+E \frac{\partial f}{\partial x}+F f=0
$$

If we can eliminate the mixed-derivative term then we have a chance of using the method of separation of variables.
The linear change of variables we were looking at while classifying our equations:

$$
\xi=\alpha x+\beta t \quad \eta=\gamma x+\delta t
$$

gave the mixed-derivative term as

$$
[2 A \beta \delta+B(\alpha \delta+\beta \gamma)+2 C \alpha \gamma] \frac{\partial^{2} f}{\partial \xi \partial \eta}
$$

It is clear that our four variables are more than enough: we can make a choice under which there is no mixed-derivative term. We'll look later at how to optimise the choice.

E. 1 The basics

You will all have seen this method before: I will only run through it briefly. We seek to express our solution as a sum of solutions of the form

$$
f(x, t)=X(x) T(t)
$$

Substituting this into the governing equation (we've made our change of variables already so there is no mixed derivatives term)

$$
A \frac{\partial^{2} f}{\partial t^{2}}+C \frac{\partial^{2} f}{\partial x^{2}}+D \frac{\partial f}{\partial t}+E \frac{\partial f}{\partial x}+F f=0
$$

gives

$$
\begin{gathered}
A X(x) T^{\prime \prime}(t)+C X^{\prime \prime}(x) T(t)+D X(x) T^{\prime}(t)+E X^{\prime}(x) T(t)+F X(x) T(t)=0 \\
\frac{A T^{\prime \prime}(t)}{T(t)}+\frac{D T^{\prime}(t)}{T(t)}=-\frac{C X^{\prime \prime}(x)}{X(x)}-\frac{E X^{\prime}(x)}{X(x)}-F
\end{gathered}
$$

Now the left hand side of this equation is a function of t only and the right hand side only depends on x, so they must both be a constant, λ, independent of x and t. This insight gives us two ODEs to solve:

$$
A T^{\prime \prime}(t)+D T^{\prime}(t)-\lambda T(t)=0 \quad C X^{\prime \prime}(x)+E X^{\prime}(x)+(F+\lambda) X(x)=0
$$

These give us pairs of solutions, coupled through the value of the constant λ, and typically we write the final solution as

$$
f(x, t)=\sum_{n} X_{n}\left(\lambda_{n}, x\right) T_{n}\left(\lambda_{n}, t\right)
$$

Example: Laplace in plane polars

Laplace's equation in plane polar coordinates is

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial f}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} f}{\partial \theta^{2}}=0 \quad r^{2} \frac{\partial^{2} f}{\partial r^{2}}+r \frac{\partial f}{\partial r}+\frac{\partial^{2} f}{\partial \theta^{2}}=0
$$

The separable solution $f(r, \theta)=R(r) T(\theta)$ gives the coupled ODEs

$$
\frac{r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)}{R(r)}=A \quad \frac{T^{\prime \prime}(\theta)}{T(\theta)}=-A .
$$

We look at the three cases $A>0, A<0$ and $A=0$ separately; and because we're in polar coordinates, any solution must be periodic of period 2π in θ.

Positive constant $A=\lambda^{2}$

$$
\begin{array}{cccc}
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)-\lambda^{2} R(r)=0 . & \text { gives } \quad R(r)=a_{1} r^{\lambda}+a_{2} r^{-\lambda} \\
T^{\prime \prime}(\theta)=-\lambda^{2} T(\theta) \quad \text { gives } & T(\theta)=b_{1} \cos \lambda \theta+b_{2} \sin \lambda \theta
\end{array}
$$

and the periodicity condition fixes λ to be an integer.
Negative constant $A=-\mu^{2}$

$$
T^{\prime \prime}(\theta)=\mu^{2} T(\theta) \quad \text { gives } \quad T(\theta)=c_{1} e^{\mu \theta}+c_{2} e^{-\mu \theta}
$$

and now the periodicity condition cannot be satisfied for $\mu \neq 0$.
Zero constant $A=0$

$$
\begin{gathered}
T^{\prime \prime}(\theta)=0 \quad T(\theta)=d_{1}+d_{2} \theta \quad d_{2}=0 \\
r^{2} R^{\prime \prime}(r)+r R^{\prime}(r)=0 \quad R(r)=d_{3}+d_{4} \ln r
\end{gathered}
$$

The general solution to Laplace's equation in plane polars is then:

$$
f(r, \theta)=A+B \ln r+\sum_{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)\left(c_{n} r^{n}+d_{n} r^{-n}\right) .
$$

E. 2 Boundary conditions

Of course, Laplace's equation is also separable (has no mixed derivatives) in Cartesian coordinates; and a similar procedure produces the general solution

$$
\begin{aligned}
f(x, y)= & (\alpha x+\beta)(\gamma y+\delta) \\
& +\int(a(\lambda) \cos \lambda x+b(\lambda) \sin \lambda x)\left(c(\lambda) e^{\lambda y}+d(\lambda) e^{-\lambda y}\right) \mathrm{d} \lambda \\
& +\int(A(\lambda) \cos \lambda y+B(\lambda) \sin \lambda y)\left(C(\lambda) e^{\lambda x}+D(\lambda) e^{-\lambda x}\right) \mathrm{d} \lambda
\end{aligned}
$$

so how do we know which solution to use?
The simple answer is that the boundary conditions are crucial. Any second order PDE possesses a range of possible coordinates in which it has no mixed derivatives: and the boundary conditions of the specific problem to be solved must inform our choice.

We need the following conditions to be satisfied:

Separable equation

The differential equation must be separable: that is, there are no mixed derivatives and, if the coefficients depend on η and ξ, then (after multiplication of the whole equation by some function if necessary) the derivatives w.r.t. η have coefficients which depend only on η and those w.r.t. ξ have coefficients which depend only on ξ. The coefficient of the no-derivatives term must be at worst the sum of a function of η and a function of ξ.

$$
\frac{\partial^{2} u}{\partial t^{2}}-\frac{x^{2}}{(t+1)^{2}} \frac{\partial^{2} u}{\partial x^{2}}=0 \text { is OK } \quad \frac{\partial^{2} u}{\partial t^{2}}-\frac{\partial^{2} u}{\partial x^{2}}+\cos (x t) u=0 \text { is not. }
$$

Boundary conditions on coordinate lines

All the boundary conditions in the problem must be located along lines $\eta=$ constant or $\xi=$ constant. This does include the possibility of a boundary condition as one variable $\rightarrow \infty$.

Correct type of boundary conditions

Along a line $\eta=$ constant, the boundary condition must not involve any partial derivatives with respect to ξ; and the coefficients of derivatives involved in the boundary conditions must not vary with ξ.

$$
\frac{\partial f}{\partial \eta}(0, \xi)=g(\xi) \text { is } \mathrm{OK} \quad\left(\frac{\partial f}{\partial \eta}+\frac{\partial f}{\partial \xi}\right)(0, \xi)=0 \text { is not. }
$$

The equivalent condition is required of the boundary conditions along a line $\xi=$ constant.

Realistically, the boundary conditions are likely to completely constrain the coordinates we use if we wish to use separation of variables; and if the coordinates that work for the boundary conditions don't work for the PDE, there's very little we can do about it.

Example

[Weinberger p. 70.]

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

This is a flukey one: it looks like it won't work but a bit of cunning will get us there. First we try the standard separable solution:

$$
u=X(x) Y(y) \quad X^{\prime \prime}(x) Y(y)+X^{\prime}(x) Y^{\prime}(y)+X(x) Y^{\prime \prime}(y)=0
$$

and then look at $Y^{\prime \prime} / Y$:

$$
-\frac{Y^{\prime \prime}(y)}{Y(y)}=\frac{X^{\prime \prime}(x)}{X(x)}+\frac{X^{\prime}(x) Y^{\prime}(y)}{X(x) Y(y)} .
$$

Taking the partial derivative of this equation w.r.t. x (and noting that the left hand side is independent of x) gives

$$
\begin{aligned}
0 & =\frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{X^{\prime \prime}(x)}{X(x)}\right)+\frac{Y^{\prime}(y)}{Y(y)} \frac{\mathrm{d}}{\mathrm{~d} x}\left(\frac{X^{\prime}(x)}{X(x)}\right) \\
& =\frac{X^{\prime \prime \prime}(x) X(x)-X^{\prime \prime}(x) X^{\prime}(x)}{X^{2}(x)}+\frac{Y^{\prime}(y)}{Y(y)}\left(\frac{X^{\prime \prime}(x) X(x)-X^{\prime}(x)^{2}}{X^{2}(x)}\right),
\end{aligned}
$$

which is separable if we divide by the bracketed term on the right:

$$
-\frac{X^{\prime \prime \prime}(x) X(x)-X^{\prime \prime}(x) X^{\prime}(x)}{X^{\prime \prime}(x) X(x)-X^{\prime}(x)^{2}}=\frac{Y^{\prime}(y)}{Y(y)}=2 \lambda
$$

Now we proceed as before: solve

$$
Y^{\prime}(y)=2 \lambda Y(y) \quad Y(y)=e^{2 \lambda y}
$$

If we were to carry on with this equation we would have to solve

$$
X^{\prime \prime \prime}(x) X(x)-X^{\prime \prime}(x) X^{\prime}(x)+2 \lambda X^{\prime \prime}(x) X(x)-2 \lambda X^{\prime}(x)^{2}=0
$$

but now that we know Y, we can return to the original equation:

$$
\begin{gathered}
-\frac{Y^{\prime \prime}(y)}{Y(y)}=\frac{X^{\prime \prime}(x)}{X(x)}+\frac{X^{\prime}(x) Y^{\prime}(y)}{X(x) Y(y)}: \quad-4 \lambda^{2}=\frac{X^{\prime \prime}(x)}{X(x)}+2 \lambda \frac{X^{\prime}(x)}{X(x)} . \\
X(x)=e^{-\lambda x}(a \cos \sqrt{3} \lambda x+b \sin \sqrt{3} \lambda x)
\end{gathered}
$$

and the general solution is

$$
u(x, y)=\sum_{\lambda} \exp [\lambda(2 y-x)]\left(a_{\lambda} \cos \sqrt{3} \lambda x+b_{\lambda} \sin \sqrt{3} \lambda x\right) .
$$

The moral of this story is: if your boundary conditions look suitable for separation of variables, but your equation doesn't, don't despair - at least not until you've had a go!

