8 Matching with logs

Consider the ODE:

$$
x^{2} f^{\prime \prime}-\varepsilon f f^{\prime}=0
$$

with boundary conditions $f(0)=1, f(1)=0$.

8.1 Outer expansion

Let's attempt a regular expansion first. We won't be throwing away the highest derivative so we could reasonably expect this to work.
The expansion $f=f_{0}+\varepsilon f_{1}+\cdots$ gives, to two terms,

$$
\begin{aligned}
x^{2} f_{0}^{\prime \prime} & =0 \\
\varepsilon x^{2} f_{1}^{\prime \prime}-\varepsilon f_{0} f_{0}^{\prime} & =0
\end{aligned}
$$

with solutions,

$$
\begin{gathered}
f_{0}=A_{0} x+B_{0} \\
f_{1}=A_{0}^{2}(x \ln x-x)-A_{0} B_{0} \ln x+A_{1} x+B_{1}
\end{gathered}
$$

Suppose we start by satisfying the boundary condition at $x=1$. Then we have

$$
\begin{gathered}
f_{0}=A_{0} x-A_{0} \\
f_{1}=A_{0}^{2}(x \ln x-x+\ln x+1)+A_{1} x-A_{1} .
\end{gathered}
$$

At leading order, the boundary condition at $x=0$ may be satisfied by setting $A_{0}=-1$; but now f_{1} diverges as $x \rightarrow 0$ and we cannot satisfy the boundary condition with any choice of A_{1}. What has gone wrong?
Let us look again at the ODE, this time paying attention to small x (where we know the problems occur). Suppose we stretch $x=\delta z$. Then the two terms scale as, respectively, 1 and $\varepsilon \delta^{-1}$, which balance when $\delta=\varepsilon$. So we only expect the solution we found above to work for $x \gg \varepsilon$. We have found an outer solution:

$$
f \sim A_{0}(x-1)+\varepsilon\left[A_{0}^{2}(x \ln x-x+\ln x+1)+A_{1} x-A_{1}\right] .
$$

Note that when $x \sim \varepsilon$ this solution becomes

$$
f \sim-A_{0}+A_{0}^{2} \varepsilon \ln \varepsilon+\varepsilon\left[A_{0}^{2}+A_{0}-A_{1}\right]+\cdots
$$

which suggests that the scaling for terms in the inner expansion should be a series $1, \varepsilon \ln (1 / \varepsilon), \varepsilon, \ldots$

8.2 Inner expansion

Let's trying using this stretch for an inner:

$$
f=F_{0}+\varepsilon \ln (1 / \varepsilon) F_{1}+\varepsilon F_{2}+\cdots
$$

with the equation giving

$$
z^{2} f^{\prime \prime}-f f^{\prime}=0
$$

Unfortunately we can't solve this in general. . . we are going to have to take some information from the boundary condition to inform an attempt at solution. Since we need $f=1$ at $x=0$, we try a solution

$$
f=1+\varepsilon \ln (1 / \varepsilon) F_{1}(z)+\varepsilon F_{2}(z)+\cdots
$$

and see if it works. The leading order term is satisfied as all derivatives of our F_{0} are zero; the next two equations become

$$
\begin{aligned}
& z^{2} F_{1}^{\prime \prime}-F_{1}^{\prime}=0 \\
& z^{2} F_{2}^{\prime \prime}-F_{2}^{\prime}=0
\end{aligned}
$$

which have solution

$$
\begin{gathered}
F_{i}^{\prime}=a_{i} \exp [-1 / z] \\
F_{i}=a_{i} \int_{0}^{z} \exp [-1 / t] \mathrm{d} t+b_{i}=b_{i}+a_{i} \int_{1 / z}^{\infty} \frac{e^{-\tau}}{\tau^{2}} \mathrm{~d} \tau
\end{gathered}
$$

The conditions $F_{i}=0$ at $z=0$ give $b_{1}=b_{2}=0$ but a_{1} and a_{2} are still undetermined.

8.3 Matching

Can we match this onto our outer? We have

$$
\begin{gathered}
f_{\text {outer }} \sim A_{0}(x-1)+\varepsilon\left[A_{0}^{2}(x \ln x-x+\ln x+1)+A_{1}(x-1)\right]+\cdots \\
\quad f_{\text {inner }} \sim 1+\varepsilon \ln (1 / \varepsilon) a_{1} \int_{1 / z}^{\infty} \frac{e^{-\tau}}{\tau^{2}} \mathrm{~d} \tau+\varepsilon a_{2} \int_{1 / z}^{\infty} \frac{e^{-\tau}}{\tau^{2}} \mathrm{~d} \tau+\cdots
\end{gathered}
$$

We use an intermediate variable in the usual way: $x=\varepsilon^{\alpha} \eta$ and $z=\varepsilon^{\alpha-1} \eta$.

$$
f_{\text {outer }} \sim-A_{0}+\varepsilon^{\alpha} A_{0} \eta-\varepsilon \ln (1 / \varepsilon) \alpha A_{0}^{2}+\varepsilon\left[A_{0}^{2}-A_{1}+A_{0}^{2} \ln \eta\right]+O\left(\varepsilon^{1+\alpha} \ln (1 / \varepsilon)\right)
$$

but for the inner, we need more information about our integral: for small ρ,

$$
\int_{\rho}^{\infty} \frac{e^{-\tau}}{\tau^{2}} \mathrm{~d} \tau \sim \frac{1}{\rho}+\ln \rho+\gamma-1-\frac{\rho}{2}+O\left(\rho^{2}\right)
$$

in which γ is Euler's constant $\gamma=0.5772156649 \ldots$... So, putting large z and hence small $1 / z$ into our inner expansion, we have

$$
\begin{gathered}
f_{\text {inner }}^{\sim} \quad 1+\varepsilon \ln (1 / \varepsilon) a_{1}\left[\varepsilon^{\alpha-1} \eta+(\alpha-1) \ln (1 / \varepsilon)-\ln \eta+\gamma-1+O\left(\varepsilon^{1-\alpha}\right)\right] \\
+\varepsilon a_{2}\left[\varepsilon^{\alpha-1} \eta+(\alpha-1) \ln (1 / \varepsilon)-\ln \eta+\gamma-1+O\left(\varepsilon^{1-\alpha}\right)\right]+\cdots \\
\sim \quad 1+\varepsilon^{\alpha} \ln (1 / \varepsilon) a_{1} \eta+\varepsilon^{\alpha} a_{2} \eta+\varepsilon \ln ^{2}(1 / \varepsilon) a_{1}(\alpha-1) \\
+\varepsilon \ln (1 / \varepsilon)\left(a_{2}(\alpha-1)-a_{1}[\ln \eta-\gamma+1]\right)-\varepsilon a_{2}[\ln \eta-\gamma+1] \\
+O\left(\varepsilon^{2-\alpha} \ln (1 / \varepsilon)\right)
\end{gathered}
$$

Let us match at each order:

$$
\begin{array}{lll}
O(1) & 1=-A_{0} & A_{0}=-1 \\
O\left(\varepsilon^{\alpha} \ln (1 / \varepsilon)\right) & a_{1} \eta=0 & a_{1}=0 \\
O\left(\varepsilon^{\alpha}\right) & a_{2} \eta=A_{0} \eta & a_{2}=-1 \\
O\left(\varepsilon \ln ^{2}(1 / \varepsilon)\right) & 0=0 & \\
O(\varepsilon \ln (1 / \varepsilon)) & a_{2}(\alpha-1)=-\alpha A_{0}^{2} &
\end{array}
$$

and we cannot match at this order. We are missing a term $\varepsilon \ln (1 / \varepsilon)$ from the outer: we now realise we should have used the same expansion series in the outer that we used in the inner. Ironically, as $a_{1}=0$ we didn't actually need to use the full expansion in the inner - but that's just the way the cookie crumbles.

8.4 Outer revisited

We pose a new outer expansion: $f=f_{0}+\varepsilon \ln (1 / \varepsilon) g_{1}+\varepsilon f_{1}+\cdots$, which gives:

$$
\begin{gathered}
x^{2} f_{0}^{\prime \prime}=0 \\
x^{2} g_{1}^{\prime \prime}=0 \\
x^{2} f_{1}^{\prime \prime}-f_{0} f_{0}^{\prime}-f_{0} f_{0}^{\prime}=0
\end{gathered}
$$

The solution for f_{0} is as before (with $f_{0}(1)=0$):

$$
f_{0}=A_{0} x+B_{0} \quad f_{0}=A_{0} x-A_{0}
$$

and g_{1} is the same:

$$
g_{1}=C_{1} x-D_{1} \quad g_{1}=C_{1} x-C_{1}
$$

and finally, f_{1} is unchanged by the modification:

$$
x^{2} f_{1}^{\prime \prime}=A_{0}^{2}(x-1) \quad f_{1}=A_{0}^{2}(x \ln x-x+\ln x-1)+A_{1}(x-1)
$$

The full amended outer solution is
$f=A_{0}(x-1)+\varepsilon \ln (1 / \varepsilon) C_{1}(x-1)+\varepsilon\left[A_{0}^{2}(x \ln x-x+\ln x-1)+A_{1}(x-1)\right]+\cdots$

8.5 Matching revisited

Using the intermediate variable $x=\varepsilon^{\alpha} \eta$, the inner expansion is as before (setting $a_{1}=0$ and $a_{2}=-1$ from our first matching):

$$
f_{\text {inner }} \sim 1-\varepsilon^{\alpha} \eta+\varepsilon \ln (1 / \varepsilon)(1-\alpha)+\varepsilon[\ln \eta-\gamma+1]+O\left(\varepsilon^{2-\alpha} \ln (1 / \varepsilon)\right)
$$

and the outer becomes (setting $A_{0}=-1$ from our first attempt):

$$
f_{\text {outer }} \sim 1-\varepsilon^{\alpha} \eta-\varepsilon \ln (1 / \varepsilon)\left[C_{1}+\alpha\right]+\varepsilon\left[\ln \eta-1-A_{1}\right]+O\left(\varepsilon^{1+\alpha} \ln (1 / \varepsilon)\right)
$$

The expressions match for the first two terms: moving further in we have:

$$
\begin{array}{clll}
O(\varepsilon \ln (1 / \varepsilon)) & : & 1-\alpha=-C_{1}-\alpha & \\
C_{1}=-1 \\
O(\varepsilon) & : & -\gamma+1=-1-A_{1} & \\
A_{1}=\gamma-2
\end{array}
$$

To summarise, we have the outer solution

$$
f=1-x+\varepsilon \ln (1 / \varepsilon)(1-x)+\varepsilon[(x+1) \ln x+(\gamma-3) x-\gamma+1]+\cdots
$$

and inner (with $x=\varepsilon z$)

$$
f=1-\varepsilon \int_{1 / z}^{\infty} \frac{e^{-\tau}}{\tau^{2}} \mathrm{~d} \tau+\cdots
$$

