
7 More matching!

Last lecture we looked at matched asymptotic expansions in the situation where
we found all the possible underlying scalings first, located where to put the
boundary later from the direction of the exponential decay, applied all sets of
boundary conditions and finally matched our two expansions. That’s a good
generic picture but there are more possibilities.

7.1 Another way to find scalings: breakdown of ordering

Way back when we looked at regular expansions, I mentioned that one possi-
ble warning sign was that the ordering of terms in our expansion could break
down. This can be used as an alternative method of seeking out new scalings
and stretches, particularly for complex problems and when the outer scale and
stretch are fixed by the boundary conditions.

This example comes from Hinch exercise 5.12 (and originally Van Dyke):

x3
dy

dx
= ε((1 + ε)x+ 2ε2)y2 in 0 < x < 1

with boundary condition y(1) = 1− ε.

We start with the obvious expansion:

y ∼ y0 + εy1 + ε2y2 + · · ·

and substitute to have

x3y′0 = 0
εx3y′1 = εxy20
ε2x3y′2 = 2ε2xy0y1 + ε2xy20

We will be applying the boundary condition to this solution: y0(1) = 1, y1(1) =
−1, y2(1) = 0, and so on.

Order 1 y′0 = 0 gives y0 = a0 and hence y0 = 1.

Order ε x3y′1 = x gives y1 = a1 − 1/x and hence y1 = −1/x.

Order ε2 x3y′2 = x− 2 gives y2 = a2 − 1/x+1/x2 and hence y2 = 1/x2 − 1/x.

Our outer solution begins

y ∼ 1−
ε

x
+ ε2

(

1

x2
−

1

x

)

+ · · ·

Now both the (nominally) order ε and order ε2 terms become order 1 when
x ∼ ε. The function value is still order 1 (pick, for instance, x = 2ε to see this)
and so we look for an inner expansion with x = εz and put

y = f0(z) + εf1(z) + ε2f2(z) + · · ·

The differential equation transforms to

z3
dy

dz
= ((1 + ε)z + 2ε)y2
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which then gives

z3f ′

0 = zf2
0

εz3f ′

1 = 2εzf0f1 + ε(z + 2)f2
0

ε2z3f ′

2 = ε2z(f2
1 + 2f0f2) + 2ε2(z + 2)f0f1

We will solve for two terms before matching with the outer.

Order 1 z3f ′

0 = zf2
0 gives 1/f0 = A0 + 1/z and f0 = z/(1 +A0z).

Order ε z3f ′

1 − 2zf0f1 = (z + 2)f2
0 becomes

f ′

1 − 2f1/z(1 +A0z) = (z + 2)/z(1 +A0z)
2

and hence (using an integrating factor of (1 +A0z)
2/z2) we obtain

d

dz

(

(1 +A0z)
2

z2
f1

)

=
1

z2
+

2

z3

f1 =
A1z

2

(1 +A0z)2
−

1 + z

(1 +A0z)2
.

So now our two solutions are

youter = 1−
ε

x
+ ε2

(

1

x2
−

1

x

)

+ · · ·

yinner =
z

(1 +A0z)
+ ε

(

A1z
2

(1 +A0z)2
−

1 + z

(1 +A0z)2

)

+ · · ·

related by x = εz. Introducing x = εαη and z = εα−1η and expanding (noting
that z is large and so z−1 is small) gives

youter ∼ 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε2−α 1

η
+ · · ·

yinner =
1

A0

−
ε1−α

A2
0
η

+
ε2−2α

η2A3
0

+ · · ·

+ ε

(

A1

A2
0
(1 + (A0εα−1η)−1)2

−
1 + εα−1η

(1 +A0(εα−1η))2

)

+ · · ·

Clearly to match the order 1 term we need A0 = 1; then the comparison becomes

youter ∼ 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε2−α 1

η
+ · · ·

yinner = 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε3−3α 1

η3
+ · · ·

+ εA1(1 + ε1−αη−1)−2 − ε2−αη−1(1 + ε1−αη−1)−1 + · · ·

= 1− ε1−α 1

η
+ ε2−2α 1

η2
− ε3−3α 1

η3
+ · · ·

+ (A1ε− 2A1ε
2−αη−1 + · · · )− ε2−αη−1(1− ε1−αη−1 + · · · )
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There is nothing in the outer solution to match the A1ε term so we need A1 = 0;
the other unmatched terms all have powers like ε3−nα so would match the third
term of the outer, which we have not calculated. Our inner solution is therefore

yinner =
z

(1 + z)
−

ε

(1 + z)
+ · · ·

with x = εz.

This problem has hidden depths though: the first two terms of our inner ex-
pansion break order when z is order ε. At that point the function value is also
order ε, so we look for an inner-inner expansion y = εF (X) with z = εX. The
governing equation:

z3
dy

dz
= ((1 + ε)z + 2ε)y2

becomes:

X3
dF

dX
= ((1 + ε)X + 2)F 2.

Here we will only look for the leading order term:

X3
dF0

dX
= (X + 2)F 2

0

∫

dF0

F 2
0

=

∫

1

X2
+

2

X3
dX

−1

F0

=
−1

X
−

1

X2
− C0 F0 =

X2

C0X2 +X + 1
.

Now we need to compare the inner and double-inner expansions:

yinner =
z

(1 + z)
−

ε

(1 + z)
+ · · ·

ydouble ∼ ε
X2

C0X2 +X + 1

with z = εX. We set z = εαξ and X = εα−1ξ to have

yinner = εαξ(1− εαξ + · · · )− ε(1 + · · · )

ydouble ∼
ε

C0

(1 + ε1−αC−1

0
ξ−1 + ε2−2αC−1

0
ξ−2)−1

∼
ε

C0

(1− ε1−αC−1

0
ξ−1 + · · · )

The leading order terms here simply don’t balance. There is nothing in the
double-inner that gets as large as the εαξ term in the inner. However, in ex-
panding our double-inner solution, we did assume that C0 was nonzero. If we
try the case where it is zero, we get:

ydouble = ε
X2

X + 1
+ · · · = εX

1

1 +X−1
+ · · ·

∼ εαξ(1− ε1−αξ−1 + · · · )

which now matches the leading term from the inner. To match any more terms
we would need to go to higher order in both expansions.
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In summary, this ODE has three layers of asymptotic solution:

youter = 1−
ε

x
+ ε2

(

1

x2
−

1

x

)

+ · · ·

yinner =
z

(1 + z)
−

ε

(1 + z)
+ · · · with x = εz

ydouble = ε
X2

X + 1
+ · · · with z = εX.

This three-layered structure is known as a triple-deck problem.

7.2 A worse example

This example comes from the book by Cole. The governing equation is

ε
d2f

dx2
+ f

df

dx
− f = 0

with boundary conditions f(0) = −1, f(1) = 1.

These boundary conditions fix f to be strictly order 1, so we cannot scale f and
can only consider stretching x. Note that you have seen this equation before
in exercise 4 of sheet 3. In the case of no scaling (α = 0) you should have
found two possible stretches: x ∼ 1 and x ∼ ε. You will also have found all
the possible leading-order outer and inner solutions, but I didn’t give you any
boundary conditions and you hadn’t learnt about matching yet, so you couldn’t
determine any of the constants.

Outer

Let us look first at the outer solution. We pose f = f0(x)+εf1(x)+ε2f2(x)+· · · .
The leading-order equation is

f0
df0
dx

− f0 = 0 =⇒ f0

(

df0
dx

− 1

)

= 0

which has two solutions, f0(x) ≡ 0 and f0(x) = x + C. Note that for both
of these, d2f0/dx

2 = 0 and so f0 is an exact solution of the equation, and
f1 = f2 = · · · = 0.

Clearly the branch f0 = 0 can’t match either of the boundary conditions, so we
know our outer solution must be

f(x) = x+ C.

We have not yet found where the boundary layer will be; since the outer is so
simple, we might as well work out the constant for both possibilities now.

If the outer meets x = 1 then we have C = 0 and so fouter,1(x) = x.
If the outer meets x = 0 then instead we have C = −1 and fouter,0(x) = x− 1.
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Inner

What stretch do we expect for the inner? Note that the boundary conditions
mean we can’t scale f , we can only stretch x. We found in your exercise that
we should stretch x = a+ εz.

We introduce z = (x− a)/ε and rewrite our differential equation:

d2f

dz2
+ f

df

dz
− εf = 0

Now we pose an inner expansion: f ∼ F0(z) + εF1(z) + ε2F2(z) + · · · , and at
leading order the governing equation is

d2F0

dz2
+ F0

dF0

dz
= 0.

We can integrate this directly once:

dF0

dz
+

1

2
F 2

0 = C.

Now remember that for a boundary layer solution, we are going to need solutions
which decay to some fixed value out of the layer. This means that as z → ±∞
(but not necessarily both), we need dF0/dz → 0 and so C ≥ 0. (This already
eliminates some of the possible solutions you found.) Let us set C = 2k2 for
convenience.

This ODE for F0 has three different possible forms of solution. If k = 0 the
solution is

F0 =
2

z + C
,

if we are to use this solution the point z = −C must not lie within our domain.

For k > 0 there are three solutions, two of which work.

First we look at the possibility that |F0| = 2k. In that case

dF0

dz
= 0 F0 = ±2k.

This is not a true inner solution: it does not depend on z, so it doesn’t vary
quickly w.r.t. x. In fact, it is just a regular outer solution expanded in terms
of the inner variable. So we move on to the two other cases: |F0| < 2k and
|F0| > 2k.

In both of these cases we can solve the ODE by partial fractions:

2
dF0

dz
= 4k2 − F 2

0 .

∫

2k dz =

∫

4k

4k2 − F 2
0

dF0 =

∫
(

1

2k − F0

+
1

2k + F0

)

dF0

2kz + 2B = − ln |2k − F0|+ ln |2k + F0| = ln

∣

∣

∣

∣

2k + F0

2k − F0

∣

∣

∣

∣

2k + F0

2k − F0

= ± exp [2(kz +B)]
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F0 = 2k
exp [(kz +B)]∓ exp [−(kz +B)]

exp [(kz +B)]± exp [−(kz +B)]

which has two solutions,

F0 = 2k tanh [(kz +B)] F0 = 2k coth [(kz +B)],

both of which decay exponentially to some limit as z → ∞.

Look at the forms of the tanh and coth curves:

-1

 1

We can see that the tanh solution moves smoothly from one value to another
over the width of the boundary layer, whereas the coth profile cannot be given a
value z = 0. This means that the coth profile can only be used if the boundary
layer is at one end or other of the region, whereas the tanh profile can be used
anywhere.

Matching with a single boundary layer

Let us try first to put the boundary layer near x = 0. The outer solution must
match the boundary condition at x = 1 so

fouter = x.

Now in the inner region we can either have

F (z) = 2k tanh [kz +B] or F (z) = 2k coth [kz +B] or F (z) = 2/(z + C).

In each case we need F (z = 0) = −1 and F (z → ∞) = 0. The second of
these gives k = 0 both the first two cases, and then we cannot match the other
boundary condition for any B. For the third function, we have the right result
as z → ∞, but to match the condition at z = 0 gives C = −2 and the forbidden
point z = −C = 2 lies within our domain. FAILED.

Now we try with a boundary layer near x = 1. This time the outer solution
must match the boundary condition at x = 0 so

fouter = x− 1.
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In the inner region the possibilities are

F (z) = 2k tanh [kz +B] or F (z) = 2k coth [kz +B] or F (z) = 2/(z + C).

The boundary conditions are F (z = 0) = 1 and F (z → −∞) = 0. We have the
same problem again: we need both k 6= 0 and k = 0, or z = −C lies within our
domain. FAILED.

Finally, let us try having the “boundary layer” in the middle, at some general
position a between 0 and 1. This time we have two different branches of the
outer solution:

fouter,1(x) = x fouter,1(a) = a.

fouter,0(x) = x− 1 fouter,0(a) = a− 1.

Our inner solution will then have boundary conditions

F (z → −∞) = a− 1 F (z → ∞) = a.

The only profile we are allowed is the tanh profile, which goes from −2k to 2k
over the width of the layer. This fixes

a− 1 = −2k a = 2k =⇒ a = 1/2, k = 1/4.

Our leading-order inner solution is

F (z) =
1

2
tanh [z/4]

and z = (x− 1

2
)/ε. The complete solution looks like this:

-1

-0.5

 0

 0.5

 1

 0

 0.2  0.4  0.6  0.8  1

Note: It is also possible to construct a solution having more than one boundary
layer: for example, try putting a tanh boundary layer at each end. However, a
single localised region of “failure” is more physically realistic.

Further expansion

Since the solution we have found in the inner is not an exact solution, we could
continue to higher orders. Often you will find that the later equations are easier
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to solve than the first because the new terms come in linearly. Although the
equation becomes linear, it’s not really easier in this case; but let us try calculate
one more term. Recall we had

d2f

dz2
+ f

df

dz
− εf = 0

with

f ∼
1

2
tanh [z/4] + εF1(z) + · · ·

At order ε this gives

d2F1

dz2
+ F0

dF1

dz
+ F1

dF0

dz
− F0 = 0

d2F1

dz2
+

1

2
tanh

[z

4

]dF1

dz
+

1

8
sech2

[z

4

]

F1 =
1

2
tanh

[z

4

]

d

dz

{

dF1

dz
+

1

2
tanh

[z

4

]

F1

}

=
1

2
tanh

[z

4

]

dF1

dz
+

1

2
tanh

[z

4

]

F1 = 2 ln cosh
[z

4

]

+ C1

d

dz

{

cosh2
[z

4

]

F1

}

= 2 cosh2
[z

4

]

ln cosh
[z

4

]

+ C1 cosh
2

[z

4

]

which may be integrated to give the solution:

F1 = C1

(z

4
+ sinh

[z

4

])

sech2
[z

4

]

+ C2sech
2

[z

4

]

+ 2sech2
[z

4

]

∫

cosh2
[z

4

]

ln cosh
[z

4

]

dz

Unfortunately the final integral is only available in terms of the polylogarithm
function:

∫

cosh2
[z

4

]

ln cosh
[z

4

]

dz =
z

4
−

z2

16
−

1

2
sinh

[z

2

]

−
z

2
ln
(

1 + exp
[

−
z

2

])

+ Li2

(

−e−z/2
)

+ ln cosh
[z

4

] (z

2
+ sinh

[z

2

])

in which

Li2(x) =

∞
∑

k=1

xk

k2
,

but if we had been able to find F1 in terms of more useful functions, the matching
procedure would have continued as before.
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