
6 Matching: Boundary Layers

Consider the following equation (rather similar to the example we used in sec-
tion 5.1):

ε
d2f

dx2
+

df

dx
+ f = 0

There are two solutions. One is regular:

f = f0(x) + εf1(x) + · · ·

Substituting gives, at order 1,

f ′
0 + f0 = 0 =⇒ f0 = a0e

−x.

At order ε we have

f ′
1 + f1 + f ′′

0 = 0 =⇒ f1 = [a1 − a0x]e
−x.

The second solution is singular, and the distinguished scaling (to balance the
first two terms) is δ = ε. We introduce a new variable z = (x− a)/ε to have

d2f

dz2
+

df

dz
+ εf = 0

with solution
f = F0(z) + εF1(z) + · · ·

At order 1 we have

F ′′
0 + F ′

0 = 0 =⇒ F ′
0 = −B0e

−z

F0(z) = A0 +B0e
−z.

At order ε we have

F ′′
1 + F ′

1 + F0 = 0 =⇒ F ′
1 = −A0 −B0ze

−z −B1e
−z

F1 = A1 −A0z +B0[ze
−z + e−z] +B1e

−z.

We now have two possible solutions:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·
F (z) ∼ A0 +B0e

−z + ε[A1 −A0z +B0(ze
−z + e−z) +B1e

−z] + · · ·

Question: Will we ever need to use both of these in the same problem?

Answer: The short answer is yes. This is a second-order differential equation,
so we are entitled to demand that the solution satisfies two boundary conditions.

Suppose, with the differential equation above, the boundary conditions are

f = e−1 at x = 1 and
df

dx
= 0 at x = 0.

We will start by assuming that the unstretched form will do, and apply the
boundary condition at x = 1 to it:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·
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e−1 = a0e
−1 + ε[a1 − a0]e

−1 + · · ·

which immediately yields the conditions a0 = 1, a1 = 1. If we had continued to
higher orders we would be able to find the constants there as well.

Now what about the other boundary condition? We have no more disposable
constants so we’d be very lucky if it worked! In fact we have

f ′(x) = −a0e
−x + ε[−a1 − a0 + a0x]e

−x + · · ·

so at x = 0,
f ′(0) = −1− 2ε+ · · ·

This is where we have to use the other solution. If we fix a = 0 in the scaling
for z, then the strained region is near x = 0. We can re-express the boundary
condition in terms of z:

df

dz
= 0 at z = 0.

Now applying this boundary condition to our strained expansion gives:

F (z) ∼ A0 +B0e
−z + ε[A1 −A0z +B0(ze

−z + e−z) +B1e
−z] + · · ·

F ′(z) = −B0e
−z + ε[−A0 −B0ze

−z −B1e
−z] + · · ·

and at z = 0,
F ′(0) = −B0 + ε[−A0 −B1] + · · ·

Imposing F ′(0) = 0 fixes B0 = 0, B1 = −A0 but does not determine A0, B1 or
A1. The solution which matches the x = 0 boundary condition is

F (z) ∼ A0 + ε[A1 −A0z −A0e
−z] + · · ·

We now have two perturbation expansions, one valid at x = 1 and for most
of our region, the other valid near x = 0. We have not determined all our
parameters. How will we do this? The answer is matching.

6.1 Intermediate variable

Suppose (as in the example above) we have two asymptotic solutions to a given
problem.

• One scales normally and satisfies a boundary condition somewhere away
from the tricky region: we will call this the outer solution.

• The other is expressed in terms of a scaled variable, and is valid in a
narrow region, (probably) near the other boundary. We will call this the
inner solution.

In order to make sure that these two expressions both belong to the same real
(physical) solution to the problem, we need to match them.

In the case where the outer solution is

f(x) = f0(x) + εf1(x) + ε2f2(x) + · · ·
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and the inner
F (z) = F0(z) + εF1(z) + ε2F2(z) + · · ·

with scalings z = x/ε, we will match the two expressions using an intermediate
variable. This is a new variable, ξ, intermediate in size between x and z, so
that when ξ is order 1, x is small and z is large. We can define it as

x = εαξ =⇒ z = εα−1ξ,

for α between 0 and 1. It is best to keep α symbolic5.

The procedure is to substitute ξ into both f(x) and F (z) and then collect orders
of ε and force the two expressions to be equal. This is best seen by revisiting
the previous example.

Example continued

We had
f(x) = e−x + ε(1− x)e−x + · · ·

and
F (z) = A0 + ε[A1 −A0z −A0e

−z] + · · ·

with z = x/ε. Defining x = εαξ, we look first at f(x):

f(x) = e−εαξ + ε(1− εαξ)e−εαξ + · · ·

Since εα � 1 we can expand the exponential terms to give

f(x) = 1− εαξ − 1

2
ε2αξ2 + ε− 2εα+1ξ +O(ε2, ε1+2α, ε3α)

Now we look at F (z). Note that z = εα−1ξ, which is large.

F (z) = A0 + ε[A1 −A0ε
α−1ξ −A0e

−εα−1ξ] + · · ·

Here the exponential terms become very small indeed so we neglect them and
have

F (z) = A0 −A0ε
αξ + εA1 + · · ·

Comparing terms of the two expansions, at order 1 we have

1 = A0

and at order εα,
−ξ = −A0ξ

which is automatically satisfied if A0 = 1. If we fix α > 1/2 then the next term
is order ε, giving

1 = A1.

The next term in the outer expansion is order ε2α, but to match that we would
have to go to order ε2 in the inner expansion.

5However, occasionally you may find it quicker to pick a value of α = 1/2, say. Be warned:
sometimes there is only a specific range of α which works.
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We have now determined all the constants to this order: so in the outer we have

f(x) = e−x + ε(1− x)e−x + · · ·

and in the inner x = εz,

F (z) = 1 + ε[1− z − e−z] + · · ·

Note: The beauty of the intermediate variable method for matching is that it
has so much structure. If you have made any mistakes in solving either inner
or outer equation, or if (by chance) you have put the inner region next to the
wrong boundary, the structure of the two solutions won’t match and you will
know something is wrong!

6.2 Where is the boundary layer?

In the last example we assumed the boundary layer would be next to the lower
boundary.

If we didn’t know, how would we work it out?

Let’s start by trying the previous example, but attempting to put the boundary
layer near x = 1.

Recall we had an outer solution:

f(x) ∼ a0e
−x + ε[a1 − a0x]e

−x + · · ·

and an inner solution

F (z) ∼ A0 +B0e
−z + ε[A1 −A0z +B0(ze

−z + e−z) +B1e
−z] + · · ·

with z = (x− a)/ε.

This time we will try to fit the outer solution to the boundary condition at
x = 0. We have

df

dx
∼ −a0e

−x + ε[a0x− a0 − a1]e
−x + · · ·

so the condition is
df

dx
= 0 at x = 0.

0 = −a0 + ε[−a1 − a0] + · · ·

which gives a0 = 0, a1 = 0 and so on. It is clear that we’re not going to get a
solution this way!

However, there is another problem, which appears when we try to fit the inner
solution at the other boundary. We are setting a = 1 and trying to fit F (z) =
e−1 at z = 0. This gives:

e−1 = A0 +B0 + ε[A1 +B0 +B1] + · · ·

so A0 = e−1−B0 and A1 = −B0−B1. This seems fine, but look at the solution
we get:

F (z) ∼ e−1+B0(e
−z−1)+ε[−e−1z+B0(z−1+(z+1)e−z)+B1(e

−z−1)]+ · · ·

55



Remember that, now the boundary layer is at the top, the outer limit of the inner
solution will be for large negative z: in other words, all of these exponentials
will be growing! This can never match onto a well-behaved outer solution.

Key fact: The boundary layer is always positioned so that any exponentials in
the inner solution decay as you move towards the outer.

6.3 Linear example

This comes from Hinch (and originally, Friedricks). Consider:

ε
d2f

dx2
+

df

dx
= 1 + 2x in 0 < x < 1

with boundary conditions f(0) = 0 and f(1) = 1.

First we look for stretches that work (note that because the equation is linear,
there is no mileage in scaling f). The right hand side of the equation is always
strictly order 1 in our range of x, so if we stretch x as x = a+ δX we have three
terms to compare:

[A] εδ−2 [B] δ−1 [C] 1.

For very small δ we have [A] � [B] � [C], and [B] catches [A] when δ = ε.
Then [C] catches [B] at δ = 1 (which is the largest value of δ we can use, given
that the range of x is only order 1).

Thus there are two distnguished stretches: the original variable x and a stretched
variable x = a + εz. Let us look at the regular, outer, solution first. Since we
don’t yet know where to put the boundary layer we won’t use any boundary
conditions on it yet.

We pose an expansion
f ∼ f0 + εf1 + ε2f2 + · · ·

and have
f ′
0 = 1 + 2x

εf ′′
0 + εf ′

1 = 0
ε2f ′′

1 + ε2f ′
2 = 0

Integrating these in turn gives:

Order 1 f ′
0 = 1 + 2x so f0 = x+ x2 + a0.

Order ε f ′
1 = −2 so f1 = −2x+ a1.

Order ε2 f ′
2 = 0 so f2 = a2.

Our regular expansion is

f ∼ a0 + x+ x2 + ε(a1 − 2x) + ε2a2 + · · ·

Now we move onto the inner, stretched solution. Recasting the ODE in terms
of z gives

d2f

dz2
+

df

dz
= ε(1 + 2a) + 2ε2z.
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We pose our expansion:

f ∼ F0 + εF1 + ε2F2 + · · ·

to have
F ′′
0 + F ′

0 = 0
εF ′′

1 + εF ′
1 = ε(1 + 2a)

ε2F ′′
2 + ε2F ′

2 = 2ε2z

Solving the leading-order equation gives

F ′′
0 + F ′

0 = 0 F0 = A0 +B0e
−z.

Immediately our condition that any exponentials must decay outside the bound-
ary layer tells us that the boundary layer is positioned near x = 0 (so that z is
positive towards the interior of the domain) and thus a = 0. That means that
we can apply to our inner solution the boundary condition f(0) = 0.

Order 1 We know F0 = A0 + B0e
−z, and applying the boundary condition

gives F0 = A0(1− e−z).

Order ε F ′′
1 + F ′

1 = 1 gives F1 = A1 +B1e
−z + z, and the boundary condition

forces F1 = A1(1− e−z) + z.

Order ε2 F ′′
2 + F ′

2 = 2z gives F2 = A2 + B2e
−z + z2 − 2z, and the boundary

condition forces F2 = A2(1− e−z) + z2 − 2z.

Now we return to the outer solution, to which we can now apply the other
boundary condition f(1) = 1:

1 ∼ a0 + 2 + ε(a1 − 2) + ε2a2 + · · ·

which fixes a0 = −1, a1 = 2 and a2 = 0. We now have our two expansions:

fouter ∼ −1 + x+ x2 + ε(2− 2x) +O(ε3)

finner ∼ A0(1− e−z) + ε[A1(1− e−z) + z] + ε2[A2(1− e−z) + z2 − 2z] + · · ·

linked by the variables x = εz.

To match the expansions, we introduce η = ε−αx = ε1−αz and substitute in
each:

fouter = −1 + εαη + ε2αη2 + 2ε− 2ε1+αη +O(ε3)

finner = A0 + εαη + ε2αη2 + εA1 − 2ε1+αη + ε2A2 + · · ·

Comparing terms at each order, we can immediately see that our expansions
are succeeding in that some of the terms have already matched each other. To
complete the match we need A0 = −1, A1 = 2 and A2 = 0. Thus our two
expansions are

fouter ∼ −1 + x+ x2 + ε(2− 2x) +O(ε3)

finner ∼ e−z − 1 + ε[2(1− e−z) + z] + ε2[z2 − 2z] + · · ·

linked via x = εz.
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Plotting these expansions for ε = 0.1, ε = 0.03 and ε = 0.01 shows the power
of the method:
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Here the outer expansions are the solid curves and the inner, the dashed curves.
As ε gets smaller, the outer is a good approximation for a larger and larger
proportion of the range, but the inner expansion is still needed near x = 0.

6.4 Another Example

This is a simplified version of an advection-diffusion problem that arose in my
own research6. Solve

x

y

∂f

∂x
− ∂f

∂y
+

f

y
− ε∇2f = 0

with boundary conditions

f + ε
∂f

∂y
= 0 at y = 1, f = 2 at y = 2

The boundary condition at y = 1 corresponds to a condition of no flux of f
through the boundary y = 1.

Outer solution

We expand the PDE:

x

y

∂f

∂x
− ∂f

∂y
+

f

y
− ε

∂2f

∂x2
− ε

∂2f

∂y2
= 0

and look for the first term of an outer solution by considering the case ε = 0:

x

y

∂f

∂x
− ∂f

∂y
+

f

y
= 0 x

∂f

∂x
− y

∂f

∂y
+ f = 0

Because this is a first-order PDE we can apply the method of characteristics,
solving:

dx

dt
= x

dy

dt
= −y

6JFM, 534, 97–114, 2005
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which gives us the parametric curves

x = x0e
t y = e−t x = x0/y

along which
df

dt
=

dx

dt

∂f

∂x
+

dy

dt

∂f

∂y
= x

∂f

∂x
− y

∂f

∂y
= −f

so
f = A(x0)e

−t = A(xy)y.

We’ll stay at one term for the outer solution.

Scaling for the inner

We’re expecting a boundary layer somewhere, because all the highest derivatives
were neglected when we put ε = 0. In fact the type of the boundary condition
at y = 1 gives us the hint: if f + ε∂f/∂y = 0 then ∂f/∂y must be an order
of magnitude larger than f . So we look to scale y rather than x. (Another
motivation for this choice is that, usually, boundary layers live near boundaries:
and there are no boundaries on x.)

So we set y = a+ εbz and substitute in to the PDE:

x

[a+O(εb)]

∂f

∂x
− ε−b ∂f

∂z
+

f

[a+O(εb)]
− ε

∂2f

∂x2
− ε1−2b ∂

2f

∂z2
= 0

Clearly the two terms which may be larger than O(1) if b > 0 are the second and
last terms: ε−b and ε1−2b. Balancing the two fixes b = 1 (which we expected
from the boundary condition). Thus:

−∂f

∂z
− ∂2f

∂z2
+ ε

x

a

∂f

∂x
+ ε

f

a
= O(ε2).

Let’s just look at the leading-order term first: f = f0 + εf1 + · · · gives

−∂f0
∂z

− ∂2f0
∂z2

= 0 f0 = A0(x) +B0(x)e
−z.

The exponential in z tells us that the boundary layer must be located at the
lower boundary so a = 1 and y = 1 + εz. Then we expect the outer to satisfy
the upper boundary condition at y = 2; now we can return to the outer and
complete it.

Full outer solution

We now have the outer solution

f = A(xy)y + εf1(x, y) + · · ·

which we need to satisfy the boundary condition f(x, 2) = 2. Applying this at
leading order gives

2 = 2A(2x) A(η) = 1 f = y + εf1(x, y) + · · ·
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Now we can continue with the expansion: the original equation was

x
∂f

∂x
− y

∂f

∂y
+ f − yε

∂2f

∂x2
− yε

∂2f

∂y2
= 0

so we have

x∂f0/∂x − y∂f0/∂y + f = 0
x∂f1/∂x − y∂f1/∂y + f1 − y∂2f0/∂x

2 − y∂2f0/∂y
2 = 0

x∂f2/∂x − y∂f2/∂y + f2 − y∂2f1/∂x
2 − y∂2f1/∂y

2 = 0

with boundary conditions

f0(x, 2) = 2 f1(x, 2) = 0 f2(x, 2) = 0

At order 1 we know this is satisfied by f0 = y. At order ε we have

x
∂f1
∂x

− y
∂f1
∂y

+ f1 = 0

which is the same equation we had for f0, so has solution f1 = A1(xy)y. This
time the boundary condition gives f1 = 0. We can see that this pattern will
continue, and in fact fn = 0 for n ≥ 1: the full outer solution is

fouter = y.

Full inner solution

We now return to the inner solution:

∂2f

∂z2
+

∂f

∂z
= ε

x

[1 + εz]

∂f

∂x
+ ε

f

[1 + εz]
− ε2

∂2f

∂x2

Keeping terms up to order ε gives

∂2f0
∂z2

+
∂f0
∂z

= 0

∂2f1
∂z2

+
∂f1
∂z

= x
∂f0
∂x

+ f0

with boundary conditions (true at each order)

f + ∂f/∂z = 0 at z = 0

At order 1 we have
f0 = A0(x) +B0(x)e

−z

and the boundary condition gives A0(x) = 0: f0 = B0(x)e
−z.

At order ε we have
∂2f1
∂z2

+
∂f1
∂z

= [xB′
0 +B0]e

−z

which gives
f1 = A1(x) +B1(x)e

−z − [xB′
0 +B0]ze

−z.

Applying the boundary condition fixes A1(x) = [xB′
0 + B0]. Thus our solution

(to order ε) is

f = B0(x)e
−z + ε[(xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z] +O(ε2).
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Matching

Our two solutions are:
fouter = y.

finner = B0(x)e
−z + ε[(xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z] +O(ε2).

Using an intermediate variable y = 1 + εαη, z = εα−1η, the outer becomes

fouter = 1 + εαη

and the inner (neglecting decaying exponentials)

finner = ε(xB′
0(x) +B0(x)) +O(ε2).

There is nothing in the inner large enough to match onto the 1 in the outer.

However, remember we started from a linear equation. Along with the fact
that the inner boundary condition was homogeneous, that means that if finner
is a solution, so is ε−1finner. So we try that:

finner,new = ε−1B0(x)e
−z + (xB′

0(x) +B0(x))(1− ze−z) +B1(x)e
−z +O(ε)

∼ (xB′
0(x) +B0(x)) +O(ε) as z → ∞.

Now we can match the two functions if

xB′
0(x) +B0(x) = 1

which is just an ODE. Solving gives B0(x) = 1 + C/x and since the line x = 0
is within our domain, we require C = 0 for regularity. Thus:

fouter = y

finner = ε−1e−z + (1− ze−z) +B1(x)e
−z +O(ε)

with y = 1 + εz. To determine B1 we would have to calculate the f2 term of
the inner expansion.
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