
5 Scalings with differential equations

5.1 Stretched coordinates

Consider the first-order linear differential equation

ε
df

dx
+ f = 0.

Since it is first order, we expect a single solution to the homogeneous equation.
If we try our standard method and set ε = 0 we get f = 0 which is clearly not
a good first term of an expansion!

Solving the differential equation directly gives

f = A0 exp [−x/ε].

This gives us the clue that what we should have done was change to a stretched

variable z = x/ε.

Let us ignore the full solution and simply make that substitution in our govern-
ing equation. Note that df/dx = df/dz dz/dx = ε−1df/dz.

εε−1 df

dz
+ f = 0

df

dz
+ f = 0.

Now the two terms balance: that is, they are the same order in ε. Clearly the
solution to this equation is now A0 exp [−z] and we have found the result.

This is a general principle. For a polynomial, we look for a distinguished scaling
of the quantity we are trying to find. For a differential equation, we look for a
stretched version of the independent variable.

The process is very similar to that for a polynomial. We use a trial scaling δ
and set

x = a+ δ(ε)X.

Then we vary δ, looking for values at which the two largest terms in the scaled
equation balance.

Let’s work through the process for the following equation:

ε
d2f

dx2
+

df

dx
− f = 0.

Again, we note that if x = a+ δX then d/dx = d/dX dX/dx = δ−1d/dX. We
substitute in these scalings, and then look at gradually increasing δ:

[A] εδ−2 [B] δ−1 [C] 1

For small δ term [A] is the largest; as δ increases term [B] catches up first at
δ = ε. Then [C] catches [B] at δ = 1 so the two distinguished stretches are
δ = ε and δ = 1.

For δ = 1 we can treat this as a regular perturbation expansion:

f = f0(x) + εf1(x) + · · ·
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f ′0 − f0 = 0
εf ′′0 + εf ′1 − f1 = 0

At leading order we have

f ′0 − f0 = 0 f0(x) = a0e
x,

and the next order becomes

f ′1 − f1 = −a0e
x f1(x) = a1e

x
− a0xe

x

so the regular solution begins

f(x) ∼ a0e
x + ε(a1 − a0x)e

x + · · ·

For δ = ε we use our new variable X = ε−1(x − a) and work with the new
governing equation:

d2f

dX2
+

df

dX
− εf = 0

Again, with the new scaling, we try a regular perturbation expansion:

f = f0 + εf1 + ε2f2 + · · ·

We substitute this in and collect powers of ε:

f0XX + f0X = 0
εf1XX + εf1X − εf0 = 0
ε2f2XX + ε2f2X − ε2f1 = 0

We then solve at each order:

ε0 : f0XX + f0X = 0 f0 = A0 +B0e
−X

ε1 : f1XX + f1X − f0 = 0 f1 = A0X −B0Xe
−X +A1 +B1e

−X

and so on. Of course, without boundary conditions to apply, this process spawns
large numbers of unknown constants. Rescaling to our original variable com-
pletes the process:

f(x) ∼ A0 +B0 exp

[

−

(x− a)

ε

]

+ ε

{

A1 +A0

(

x− a

ε

)

+

(

B1 −B0

(

x− a

ε

))

exp

[

−

(x− a)

ε

]}

+ · · ·

Note that this expansion is only valid where X = (x− a)/ε is order 1: that is,
for x close to the (unknown) value a.

5.2 Must two terms dominate?

In fact we’ve been rather harsh in our conditions. To find all roots of a polyno-
mial, we only ever consider scalings where the two largest terms balance. But
for a differential equation we can, if we like, be more relaxed. We must include
at least one scaling in which the highest-order derivative participates, otherwise
we have lost one solution of our equation; but it is possible to have a solution
in which a derivative (usually the highest derivative) dominates alone. Some-
times this is a (non-fatal) sign that we could have chosen our scaling better;
sometimes, in complicated systems, it’s unavoidable.
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Example

df

dx
+ εf = 0 with boundary condition f(0) = C.

Of course in this case we can either find the scaling instantly (x ∼ ε−1) or solve
the whole equation. But suppose instead we were to try a regular expansion:

f = f0 + εf1 + ε2f2 + ε3f3 + · · ·

f ′0 + εf ′1 + ε2f ′2 + ε3f ′3 + · · ·

+ εf0 + ε2f1 + ε3f2 = 0

then solving at each order in turn, applying the boundary condition, gives

f ′0 = 0 f0 = a0 f0 = C

f ′1 + C = 0 f1 = a1 − Cx f1 = −Cx

f ′2 − Cx = 0 f2 = a2 + 1

2
Cx2 f2 = 1

2
Cx2

which is a perfectly good regular expansion for the true solution:

f = C
{

1 + εx+ 1

2
εx2 + · · ·

}

f = C exp εx.

5.3 Nonlinear differential equations: scale and stretch

Recall that for a linear differential equation, if f is a solution then so is Cf for
any constant C. So if f(x; ε) is a solution as an asymptotic expansion, then Cf
is a valid asymptotic solution even if C is an arbitrary function of ε.

The same is not true of nonlinear differential equations. Suppose we are looking
at the equation:

d2f

dx2
+ εf(x)

df

dx
+ f2(x) = 0

There are two different types of scaling we can apply: we can scale f , or we can
stretch x. To get all valid scalings we need to do both of these at once.

Let us take f = εαF where F is strictly ord(1), and x = a + εβz with z also
strictly ord(1). Then a derivative scales like d/dx ∼ ε−βd/dz and we can look
at the scalings of all our terms:

d2f

dx2
+ εf(x)

df

dx
+ f2(x) = 0

εαε−2β εε2αε−β ε2α

As always with three terms in the equation, there are three possible balances.

• For terms I and II to balance, we need α − 2β = 2α + 1 − β. This gives
α+β+1 = 0, so that terms I and II scale as ε2+3α, and term III scales as
ε2α. We need the balancing terms to dominate, so we also need 2α > 2+3α
which gives α < −2.

• For terms I and III to balance, we need α−2β = 2α. This gives α = −2β,
so that terms I and III scale as ε2α and term II scales as ε1+5α/2. Again,
we need the non-balancing term to be smaller than the others, so we need
1 + 5α/2 > 2α, i.e. α > −2.
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• Finally, to balance terms II and III, we need 2α− β + 1 = 2α which gives
β = 1. Then terms II and III scale as ε2α and term I scales as εα−2, so to
make term I smaller than the others we need α− 2 > 2α, giving α < −2.

We can plot the lines in the α–β plane where these balances occur, and in the
regions between, which term (I, II or III) dominates:
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We can see that there is a distinguished scaling α = −2, β = 1 where all three
terms balance. If we apply this scaling to have z = (x− a)/ε and F = ε2f then
the governing ODE for F (z) (after multiplication of the whole equation by ε4)
becomes

d2F

dz2
+ F

dF

dz
+ F 2 = 0.

This is very nice: but it may not always be appropriate: the boundary conditions
may fix the size of either f or x, in which case the best you can do may be one
of the simple balance points (i.e. a point (α, β) lying on one of the lines in the
diagram).

5.4 Scale and stretch with linear differential equations

Scaling might not seem useful in a linear equation: but if the equation is ex-
pressed in terms of more than one physical variable, the relative scales of the
different variables are not necessarily obvious beforehand. To give an example
I’m using the ODEs which result from a particular linear stability problem I’ve
studied4: I’ve thrown away a few terms to make it less daunting, but there’s
still plenty to worry about!

There are 7 variables: a streamfunction ψ, three stress components s1, s2 and
s3, the pressure p, and two polymer stresses t1 and t2.

There are also two physical parameters: k (a wavenumber) and l (a diffusion
lengthscale). Either of them can be small.

ks1 + s′2 = 0 ks2 + s′3 = 0

4H J Wilson & S M Fielding. J. Non-Newtonian Fluid Mech., 138, 181–196, (2006)
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s1 = −p+ 2kψ′ + t1

s2 = ψ′′ + t2

s3 = −p− 2kψ′
− t1

t1 − l2t′′1 = 2kψ′ + 2(ψ′′ + k2ψ)

t2 − l2t′′2 = ψ′′
− k2ψ

Small k: regular expansion

Physical understanding allows us to predict that the expansion for small k will
be regular: this is because small k means we’re studying long waves, and we
don’t expect anything to happen on a very short lengthscale for long waves.

Since the whole system is linear, there’s no amplitude, so we can freely choose
one variable to make strictly order 1. Here we’ll choose the streamfunction, ψ:

ψ ∼ ψ0 + kψ1 + · · ·

Now looking at the last two equations, and assuming that t1 and t2 are the same
size, the dominant terms on their right hand sides are ψ′′ in both cases: so we
can take t1 and t2 to be order 1 as well.

The tricky part comes in deciding the size of the si terms and p. They could all
be order 1; then the first two equations would give us, at leading order,

s′2 = s′3 = 0;

in fact this is a “second-best” scaling and we can do better by allowing s1, s3
and p to have singular scalings:

s1 = k−1s1 +O(1) s3 = k−1s3 +O(1) p = k−1p+O(1).

Then our set of ODEs at leading order is

s1 + s′2 = 0 s′3 = 0 s1 = s3 = −p

s2,0 = ψ′′

0 + t2

t1 − l2t′′1 = 2ψ′′

0

t2 − l2t′′2 = ψ′′

0

Small l: regular expansion

When the lengthscale l is small, there are two expansions. The first is regular
and in fact does not need any scaling at all: the leading order equations are
simply

ks1 + s′2 = 0 ks2 + s′3 = 0

s1 = −p+ 2kψ′ + t1

s2 = ψ′′ + t2

s3 = −p− 2kψ′
− t1

t1 = 2kψ′ + 2(ψ′′ + k2ψ)

t2 = ψ′′
− k2ψ
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However, we have thrown away our highest-order derivatives of t1 and t2 in
making this expansion, so we know there must be a singular expansion as well.

Small l: stretching coordinate

Because our equations are linear, t1 will always be larger than l2t′′1 no matter
how we scale t1; in order to bring back the highest derivatives we will have to
stretch the underlying coordinate.

The terms we are concerned about are l2t′′1 and l2t′′2 , and they appear in equa-
tions with terms t1 and t2. Balancing these two types of term immediately
suggests a stretch x = a+ lz (where x is our original coordinate). Applying this
to the original equations, and using prime now to represent derivatives w.r.t. z,
we have

ks1 + l−1s′2 = 0 ks2 + l−1s′3 = 0

s1 = −p+ 2kl−1ψ′ + t1

s2 = l−2ψ′′ + t2

s3 = −p− 2kl−1ψ′
− t1

t1 − t′′1 = 2kl−1ψ′ + 2(l−2ψ′′ + k2ψ)

t2 − t′′2 = l−2ψ′′
− k2ψ

Again, we will start by fixing ψ strictly order 1: then it appears from the last
two equations that t1 and t2 will be order l−2 and (following through) so will
all the stresses si. The leading-order equations (in the new scaled variables) in
this case are:

s′2 = s′3 = 0 t1 − t′′1 = 2ψ′′ t2 − t′′2 = ψ′′

s1 = −p+ t1 s2 = ψ′′ + t2 s3 = −p− t1

But that’s not the only scaling that works.

If we continue with ψ being strictly order 1, but consider the possibility that its
leading-order term is a constant, then the forcing terms in the t equations are
order 1, and we can use the same trick as for the small-k case to get s1 involved
in the first equation: put p order l−1, then s1 and s3 are also order l−1 and the
leading-order equations are:

s1 = s3 = −p s2 = l−2ψ′′ + t2

ks1 + s′2 = s′3 = 0 t1 − t′′1 = 2k2ψ t2 − t′′2 = −k2ψ

This seems less obvious and perhaps even less convincing than the straighfor-
ward scaling above: but in the real problem I was solving, this scaling gave the
balances we needed.
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