
4 Rescaling

In this section we’ll look at one of the reasons that our ε = 0 system might
not have enough solutions, and introduce a tool that is fundamental to all
perturbation systems. We’ll start with a very simple example and work up from
there.

4.1 Example algebraic equation

Here our model equation is

εx2 + x− 1 = 0. (2)

Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives

x− 1 = 0,

with just the one solution x = 1. Since we started with a second-degree poly-
nomial we know we have lost one of our solutions; however, if we carry on with
the regular perturbation expansion we will get a perfectly valid series for the
root near x = 1.

Now let us look at the true solution to see what’s gone wrong.

x =
−1±

√
1 + 4ε

2ε

As ε → 0, the leading-order terms of the two roots are

x = 1 +O(ε); and − 1

ε
+O(1).

The first of these is amenable to the simplistic approach; we haven’t seen the
second root because it → ∞ as ε → 0.

- x

6ε

For this second root, let us try a series

x = x−1ε
−1 + x0 + εx1 + · · ·

We substitute it into (2):

x2
−1ε

−1 + 2x−1x0 + ε(x2
0 + 2x−1x1) + · · ·

+ x−1ε
−1 + x0 + εx1 + · · ·

− 1 = 0

and collecting powers of ε gives:

ε−1 : x2
−1 + x−1 = 0 ; x−1 = 0 , −1

ε0 : 2x−1x0 + x0 − 1 = 0 ; x0 = 1 , −1
ε1 : x2

0 + 2x−1x1 + x1 = 0 ; x1 = −1 , 1

Note that we can now get the expansions for both of the roots using the same
method.
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4.2 Finding the scaling

What do we do if we can’t use the exact solution to tell us about the first term
in the series?

We use a trial scaling δ. We put

x = δ(ε)X

with δ being an unknown function of ε, and X being strictly order 1. We call
this X = ord(1): as ε → 0, X is neither small nor large.

Let’s try it for our example equation: εx2+x− 1 = 0. We put in the new form:

εδ2X2 + δX − 1 = 0

and then look at the different possible values of δ. We will only get an order 1
solution for X if the biggest term in the equation is the same size as another
term: a dominant balance or distinguished scaling.

Finding scalings in large systems is more of an art than a science – it’s easy to
check your scaling works, but finding it in the first place is tricky. But with
small systems, it’s quite straightforward. I view this process in two ways: one
completely systematic (but really only practical with a three-term equation)
and the other more of a mental picture.

Systematic method

Since we need the two largest terms to balance, we try all the possible pairs of
terms and find the value of δ at which they are the same size. Then for each
pair we check that the other term is not bigger than our balancing size.

Balance terms 1 and 2 These two are the same size when εδ2 = δ which
gives δ = ε−1. Then both terms 1 and 2 scale as ε−1 and term 3 is smaller
– so this scaling works.

Balance terms 1 and 3 These two balance when εδ2 = 1 and so δ = ε−1/2.
Then our two terms are both order 1, and term 2 scales as ε−1/2 which is
bigger. The balancing terms don’t dominate so this scaling is no use.

Balance terms 2 and 3 These two balance when δ = 1, when they are both
order 1. Then term 1 is order ε, which is smaller: so we have a working
balance at δ = 1.

This process quickly gives us the only two scalings which work: δ = ε−1 and
δ = 1.

Horse-race picture

Think of the terms as horses, which “race” as we change δ. The largest term
is considered to be leading, and we are interested in the moment when the lead
horse is overtaken: that is, the two biggest terms are equal in size.

The three horses in our case are

[A] εδ2 [B] δ [C] 1
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and we will start from the point δ ≈ 0. Initially, [C] is ahead, with [B] second
and [A] a distant third.

As we increase δ, each horse moves according to its power of δ: higher powers
move faster (but start further behind). We are looking for the first moment that
one of [A] or [B] catches [C]. A quick glance tells us that for [B] it will happen
at δ = 1 whereas for [A] we have to wait until δ > 1. So the first balance is at
δ = 1, when [B] overtakes [C].

Now because [C] is the slowest horse (in fact stationary) it will never catch [B]
again, so we only need to look for the moment (if any) when [A] overtakes [B].
This is given by εδ2 = δ which gives our second balancing scaling of δ = ε−1.

4.3 Impossible equations: non-integral powers

Try this algebraic equation:

(1− ε)x2 − 2x+ 1 = 0.

Setting ε = 0 gives a double root x = 1. Now we try an expansion:

x = 1 + εx1 + ε2x2 + · · ·

Substituting in gives

1 + 2εx1 + ε2(x2
1 + 2x2) + · · ·

− ε − 2ε2x1 + · · ·
− 2 − 2εx1 − 2ε2x2 + · · ·
+ 1 = 0

At ε0, as expected, the equation is automatically satisfied. However, at order
ε1, the equation is

2x1 − 1− 2x1 = 0 1 = 0

which we can never satisfy. Something has gone wrong. . .

In fact in this case we should have expanded in powers of ε1/2. If we set

x = 1 + ε1/2x1/2 + εx1 + · · ·

then we get

1 + 2ε1/2x1/2 + ε(x2
1/2 + 2x1) + · · ·

− ε + · · ·
− 2 − 2ε1/2x1/2 − 2εx1 + · · ·
+ 1 = 0

At order ε0 we are still OK as before; at order ε1/2 we have

2x1/2 − 2x1/2 = 0

which is also automatically satisfied. We don’t get to determine anything until
we go to order ε1, where we get

x2
1/2 + 2x1 − 1− 2x1 = 0 x2

1/2 − 1 = 0

21



giving two solutions x1/2 = ±1. Both of these are valid and will lead to valid
expansions if we continue.

We could have predicted that there would be trouble when we found the double
root: near a quadratic zero of a function, a change of order ε1/2 in x is needed
to change the function value by ε:

- x

6

ε−1/2

ε
p p p p p p p pppps

4.4 Choosing the expansion series

In the example above, if we had begun by defining δ = ε1/2 we would have had
a straightforward regular perturbation series in δ. But how do we go about
spotting what series to use?

In practice, it is usually worth trying an obvious series like ε, ε2, ε3 or, if there
is a distinguished scaling with fractional powers, then a power series based on
that. But this trial-and-error method, while quick, is not guaranteed to succeed.

In general, for an equation in x, we can pose a series

x ∼ x0δ0(ε) + x1δ1(ε) + x2δ2(ε) + · · ·

in which xi is strictly order 1 as ε → 0 (i.e. tends neither to zero nor infinity)
and the series of functions δi(ε) has δ0(ε) � δ1(ε) � δ2(ε) · · · for ε � 1.

Then at each order we look for a distinguished scaling. Let us work through an
example:

√
2 sin

(
x+

π

4

)
− 1− x+

1

2
x2 = −1

6
ε.

In this case there is a solution near x = 0, which we will investigate.

First let us sort out the trigonometric term, expanding it as a Taylor series
about x = 0:

√
2 sin

(
x+

π

4

)
=

√
2
[
sinx cos

(π
4

)
+ cosx sin

(π
4

)]
=

√
2

[
1√
2
sinx+

1√
2
cosx

]
= sinx+ cosx = 1+ x− x2

2!
− x3

3!
+

x4

4!
+

x5

5!
+ · · ·

The governing equation becomes

−x3

6
+

x4

24
+

x5

120
+O(x6) = −1

6
ε.

x3 − x4

4
− x5

20
+O(x6) = ε.

We pose a series
x = x0δ0(ε) + x1δ1(ε) + · · ·

and substitute it. The leading term on the left hand side is x3
0δ

3
0 , and on the

right hand side is ε. So we set δ0 = ε1/3 and x0 = 1.
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Now we have
x = ε1/3 + x1δ1(ε) + · · ·

which we substitute into the governing equation. Remembering that δ1 � ε1/3

and keeping terms up to order ε2/3δ1 and ε4/3 (neglecting only terms which are
guaranteed to be smaller than one of these), we have

3x1ε
2/3δ1 − ε4/3/4 = 0.

To make this work, we need δ1 = ε2/3 and then x1 = 1/12.

The first two terms of the solution are:

x = ε1/3 +
1

12
ε2/3 + · · ·

4.5 A worse expansion series: Logarithms

Let us consider the equation (with ε > 0):

e−x − εx = 0.

We’re looking for the leading-order scaling for x:

x ∼ x0δ0 + x1δ1 + · · ·

As a quick first hack, we need to check we expect a solution at all. Both e−x and
−εx are decreasing functions so the whole left hand side is a decreasing function
of x. At x = 0 the function value is 1; for large x, it is negative. Therefore we
expect exactly one root, and we expect it to lie in positive x.

In order to see the scaling of the leading term, we will look at the function

f(x) = x−1e−x (we need f(x) = ε).

It is also a decreasing function, moving from ∞ at x = 0 to 0 as x → ∞. We
can check the value of f(x) for various values of x, so that we know where to
look for the root.

If x = 1 then f(x) = e−1 which is too large: so we need x > 1.

If x = ε−1, then f(x) = ε exp (−ε−1) which is exponentially small: so we need
x < ε−1.

If x = ε−α for some fixed positive α, then f(x) = εα exp (−ε−α) which is still
exponentially small: so we need a value of x which is larger than 1 but smaller
than any negative power of ε. This naturally leads us to the logarithm.

If we try δ0 = ln (1/ε) (with the inverse present so that δ0 is positive, which
makes everything more intuitive) then the leading-order approximation to f(x)
is

f(x0δ0) = x−1
0 δ−1

0 exp [−δ0x0] =
εx0

x0 ln (1/ε)

Does this work? Let’s pick values of x0 to try.

• If x0 = 1 then f(x) = ε/ ln (1/ε) � ε.

• If x0 = 1/2 then f(x) = 2ε1/2/ ln (1/ε) � ε.
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These two order-1 values for x0 bound our root, so we know we have found the
right scaling to start with. Once we’ve got the first scaling it all becomes much
easier.

Now let’s continue with the series:

x = x0 ln (1/ε) + δ1x1 + δ2x2 + · · ·

Before we go any further, note that ln (1/ε) is large and positive, and let us
denote

L1 = ln (1/ε), L2 = ln ln (1/ε) = lnL1.

The scaling of these terms is ε−α � L1 � L2 � 1.

Now on with our expansion. We substitute the first two terms into the governing
equation to have:

exp (−[x0 ln (1/ε) + x1δ1 + · · · ])− ε[x0 ln (1/ε) + x1δ1 + · · · ] = 0

εx0 exp (−[x1δ1 + · · · ]) = x0ε ln (1/ε) + · · · .
Clearly to make the powers of ε work we need x0 = 1; we then want to fix δ1 so
that

exp (−[x1δ1 + · · · ]) = ln (1/ε) + · · · .
For this we need

−[x1δ1 + · · · ] = ln ln (1/ε) + · · ·, x1δ1 = −L2.

We return to the expansion:

x = L1 − L2 + x2δ2 + · · ·

and to the governing equation:

exp (−[L1 − L2 + x2δ2 + · · · ]) = ε[L1 − L2 + x2δ2 + · · · ]

εL1 exp (−[x2δ2 + · · · ]) = εL1 − εL2 + · · ·

exp (−[x2δ2 + · · · ]) = 1− L2

L1
+ · · ·

Now since L2 � L1 we can assume δ2 � 1 and expand the exponential in the
usual way:

1− x2δ2 + · · · = 1− L2

L1
+ · · ·

and so we have found

x2δ2 =
L2

L1
.

We will carry out just one more term:

x = L1 − L2 +
L2

L1
+ x3δ3 + · · ·

exp (−[L1 − L2 + L2/L1 + x3δ3 + · · · ]) = ε[L1 − L2 + L2/L1 + x3δ3 + · · · ].
x3δ3 = −L2/L

2
1 + L2

2/2L
2
1 + · · · .

In general, if logarithms appear in a problem, only trial and error (as here) or an
iterative scheme (see, e.g. Hinch page 12) will give access to a solution. However,
solutions are usually expressible in terms of the two logarithmic building blocks
L1 and L2.
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Warning!

Not only are logarithmic expansions horrible to find, they are also a lot less use
in practice than the power series we have been looking at. Unless your physical
“small parameter” is extremely small, L1 will not be very large and L2 probably
not large at all: so the ordering of terms, while correct in the limit ε → 0, may
not be helpful at a real value of ε. The table below gives an idea of the problem.

ε L1 L2 L2/L1 (L2
2 − 2L2)/L

2
1

10−1 2.303 0.834 0.362 -0.183
10−3 6.908 1.933 0.280 -0.003
10−5 11.51 2.443 0.212 0.008
10−7 16.12 2.780 0.172 0.008
10−9 20.72 3.031 0.146 0.007
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