5 The Oldroyd-B fluid

Last time we started from a microscopic dumbbell with a linear entropic spring, and
derived the Oldroyd-B equations:
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Note that since A = IE[rr], it must be symmetric.

5.1 Shear flow

Suppose we make our fluid carry out an unsteady shear flow:

If the forcing all depends on y and t only, we expect all the physical variables only to
depend on y and t. The mass conservation equation (1) is satisfied. The momentum
equation (2) becomes

Now the tensor Vu is
so (3) gives

and (4) becomes
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5.1.1 Steady shear flow
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Now set ¥ as a constant. This means that all the variables should be independent of ¢:
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Let’s look at the last equation, for the components of A. It gives three scalar equations:
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Solving from the bottom up gives
Ay =1 Agy = AT Agz = 14 29772
The total stress becomes
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The presence of the polymers has made two changes to the Newtonian stress:
e The viscosity is increased from n to n + G7

e There is a difference between the two diagonal stress components.

This difference is called the first normal stress difference
Ni =04 —0yy = 2GT42.

As a stress acting along the flow lines (xz-direction) it has the opposite sign to pressure
so it acts like a tension: the streamlines are like stretched rubber bands. It is the driving
force behind the rod-climbing experiment:




This picture is from Boger & Walters’” book “Rheological Phenomena in Focus”. The
rod in the middle is rotated, causing a shear flow round the outside. The streamlines are
circular, so their tension causes the fluid to move to the middle — and the only place it
can go is up the rod.

5.1.2 Linear rheology

Let’s return to the time-dependent shear flow:
u = (3()y,0,0).
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For the standard linear rheology experiment, we set
A(t) = aw cos (wt).

We’'ll assume the motion starts at ¢ = 0. Before that there is no flow so the fluid was
relaxed and é = £ .

Let’s look at the evolution of A. To get the rheology, we will only need A,,, so we’ll only
use the A,, and A,, equations.
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The second of these is satsfied by A,, = 1, so the first gives
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This is one of those tricky integrals that works iteratively by parts:
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Finally the expression for A, is
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For long times, the e~(/7) term becomes very small so we will neglect it. The total shear
stress 0,, then becomes
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Thus the linear rheology functions for the Oldroyd-B fluid are
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This is just like the single exponential relaxation fluid if we set n = 0; that would give the
Upper Convected Maxwell model. With a nonzero viscosity, although the relaxation
time is still 7, the storage and loss modulus no longer cross at w = 771

5.2 Extensional flow
Finally, we look at a steady 2D extensional flow:

Again, this satisfies mass conservation. This time we have
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The stress is

and the evolution of A (independent of time and position) becomes
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The total stress is
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Since in a Newtonian fluid we have
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we can define an extensional viscosity as
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The Oldroyd-B fluid has extensional viscosity
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This strain-hardens (gets thicker with increasing speed) for low strain rates but for higher
strain rates disaster strikes:

The viscosity diverges at a strain rate of ¢ = 1/27 and for strain rates slightly larger, the
viscosity value is negative!

The moral of this: a linear spring is fine for shear flows, where the stretch is fairly
moderate; for stretching flows, a linear spring can stretch indefinitely and give infinite
forces. The standard workaround at this point is to use a nonlinear spring law (FENE
model, finie extensibility nonlinear elasticity) — which brings with it its own complications.

There is no single right answer to polymer modelling — but hopefully you now have an
idea about how to start!
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