
5 The Oldroyd-B fluid

Last time we started from a microscopic dumbbell with a linear entropic spring, and
derived the Oldroyd-B equations:

∇ · u = 0 (1)
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)

= ∇ · σ (2)

σ = −pI + η
(

∇u+ (∇u)>
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+GA (3)
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)

(4)

Note that since A = IE[r r], it must be symmetric.

5.1 Shear flow

Suppose we make our fluid carry out an unsteady shear flow:

u = (γ̇(t)y, 0, 0).

If the forcing all depends on y and t only, we expect all the physical variables only to
depend on y and t. The mass conservation equation (1) is satisfied. The momentum
equation (2) becomes

ρ
∂u

∂t
= ∇ · σ.

Now the tensor ∇u is

∇u =

(

0 0
γ̇(t) 0

)

so (3) gives

σ =
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−p ηγ̇(t)
ηγ̇(t) −p

)

+GA

and (4) becomes
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5.1.1 Steady shear flow

Now set γ̇ as a constant. This means that all the variables should be independent of t:

∇ · σ = 0.

σ =

(

−p ηγ̇
ηγ̇ −p

)

+GA

23



−

(

γ̇Axy 0
γ̇Ayy 0

)

−

(

γ̇Axy γ̇Ayy

0 0

)

= −
1

τ

(

Axx − 1 Axy

Axy Ayy − 1

)

Let’s look at the last equation, for the components of A. It gives three scalar equations:

−γ̇Axy − γ̇Axy = −
1

τ
(Axx − 1)

−γ̇Ayy = −
1

τ
Axy

0 = Ayy − 1.

Solving from the bottom up gives

Ayy = 1 Axy = γ̇τ Axx = 1 + 2γ̇2τ 2.

The total stress becomes

σ =

(

−p+G+ 2Gγ̇2τ 2 (η +Gτ)γ̇
(η +Gτ)γ̇ −p+G

)

.

The presence of the polymers has made two changes to the Newtonian stress:

• The viscosity is increased from η to η +Gτ

• There is a difference between the two diagonal stress components.

This difference is called the first normal stress difference

N1 = σxx − σyy = 2Gτ 2γ̇2.

As a stress acting along the flow lines (xx-direction) it has the opposite sign to pressure
so it acts like a tension: the streamlines are like stretched rubber bands. It is the driving
force behind the rod-climbing experiment:
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This picture is from Boger & Walters’ book “Rheological Phenomena in Focus”. The
rod in the middle is rotated, causing a shear flow round the outside. The streamlines are
circular, so their tension causes the fluid to move to the middle – and the only place it
can go is up the rod.

5.1.2 Linear rheology

Let’s return to the time-dependent shear flow:

u = (γ̇(t)y, 0, 0).

ρ
∂u

∂t
= ∇ · σ; σ =

(

−p ηγ̇(t)
ηγ̇(t) −p

)

+GA

and

∂

∂t

(

Axx Axy

Axy Ayy

)

−

(

γ̇Axy 0
γ̇Ayy 0

)

−

(

γ̇Axy γ̇Ayy

0 0

)

= −
1

τ

(

Axx − 1 Axy

Axy Ayy − 1

)

For the standard linear rheology experiment, we set

γ̇(t) = αω cos (ωt).

We’ll assume the motion starts at t = 0. Before that there is no flow so the fluid was
relaxed and A = I.

Let’s look at the evolution of A. To get the rheology, we will only need Axy, so we’ll only
use the Axy and Ayy equations.

∂Axy

∂t
− γ̇Ayy = −

1

τ
Axy

∂Ayy

∂t
= −

1

τ
(Ayy − 1).

The second of these is satsfied by Ayy = 1, so the first gives

∂Axy

∂t
− αω cos (ωt) = −

1

τ
Axy

∂Axy

∂t
+

1

τ
Axy = αω cos (ωt)

∂

∂t

[

Axye
(t/τ)

]

= αω cos (ωt)e(t/τ)

This is one of those tricky integrals that works iteratively by parts:

I =

∫ t

0

αω cos (ωt′)e(t′/τ) dt′

= [αωτ cos (ωt′)e(t′/τ)]t0 +

∫ t

0

αω2τ sin (ωt′)e(t′/τ) dt′

= [αωτ cos (ωt′)e(t′/τ)]t0 + [αω2τ 2 sin (ωt′)e(t′/τ)]t0 −

∫ t

0

αω3τ 2 cos (ωt′)e(t′/τ) dt′

= αωτ cos (ωt)e(t/τ) + αω2τ 2 sin (ωt)e(t/τ) − αωτ − ω2τ 2I
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Finally the expression for Axy is

Axy =
1

1 + ω2τ 2

(

αωτ cos (ωt) + αω2τ 2 sin (ωt)− αωτe−(t/τ)
)

For long times, the e−(t/τ) term becomes very small so we will neglect it. The total shear
stress σxy then becomes

σxy =

[

η +
Gτ

1 + ω2τ 2

]

γ̇(t) +
Gω2τ 2

1 + ω2τ 2
γ(t)

Thus the linear rheology functions for the Oldroyd-B fluid are

G′ =
Gω2τ 2

1 + ω2τ 2
G′′ = ηω +

Gωτ

1 + ω2τ 2
.

This is just like the single exponential relaxation fluid if we set η = 0; that would give the
Upper Convected Maxwell model. With a nonzero viscosity, although the relaxation
time is still τ , the storage and loss modulus no longer cross at ω = τ−1.

5.2 Extensional flow

Finally, we look at a steady 2D extensional flow:

u = (ε̇x,−ε̇y).

Again, this satisfies mass conservation. This time we have

∇u =

(

ε̇ 0
0 −ε̇

)

.

The stress is

σ =

(

−p+ 2ηε̇ 0
0 −p− 2ηε̇

)

+GA

and the evolution of A (independent of time and position) becomes

−

(

ε̇Axx −ε̇Axy

ε̇Axy −ε̇Ayy

)

−

(

ε̇Axx ε̇Axy

−ε̇Axy −ε̇Ayy

)

= −
1

τ

(

A− I
)

so

Axx =
1

(1− 2ε̇τ)
Axy = 0 Ayy =

1

(1 + 2ε̇τ)

The total stress is

σ =

(

−p+ 2ηε̇+G/(1− 2ε̇τ) 0
0 −p− 2ηε̇+G/(1 + 2ε̇τ)

)

.

Since in a Newtonian fluid we have

σ =

(

−p+ 2ηε̇ 0
0 −p− 2ηε̇

)
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we can define an extensional viscosity as

ηext =
σxx − σyy

4ε̇
.

The Oldroyd-B fluid has extensional viscosity

ηext = η +
Gτ

(1− 4ε̇2τ 2)

This strain-hardens (gets thicker with increasing speed) for low strain rates but for higher
strain rates disaster strikes:

The viscosity diverges at a strain rate of ε̇ = 1/2τ and for strain rates slightly larger, the
viscosity value is negative!

The moral of this: a linear spring is fine for shear flows, where the stretch is fairly
moderate; for stretching flows, a linear spring can stretch indefinitely and give infinite
forces. The standard workaround at this point is to use a nonlinear spring law (FENE
model, finie extensibility nonlinear elasticity) – which brings with it its own complications.

There is no single right answer to polymer modelling – but hopefully you now have an
idea about how to start!

27


