1. Show how MSIS1 acts on the following graph to find the maximum size of an independent set:

![Graph 1](image1)

2. Show how MSIS2 acts on the following graph to find a maximum size of an independent set:

![Graph 2](image2)

3. (a) Of what must a connected graph in which every vertex has degree \(\leq 2 \) consist? Prove your answer.

(b) Let \(G \) be any graph in which every vertex has degree \(\leq 2 \). Describe \(G \). How would you calculate the size of a maximal independent set of vertices of \(G \)?

4. Write an algorithm MSIS3 for calculating the size of the largest independent set of vertices: its trivial case is when no vertex has degree \(\geq 3 \), otherwise it proceeds as in MSIS1 or MSIS2.

5. Show how ChromPoly acts on the following graph to find its chromatic polynomial.

![Graph 3](image3)
6. Show how ChromPoly acts on the following graph to find its chromatic polynomial.

![Graph Image]

7. A chain on \(n \) vertices, \(S_n \), is a connected graph with exactly two vertices of degree 1 and all others of degree 2. E.g. here is a chain, \(S_4 \) with 4 vertices.

![Chain Graph Image]

Prove by induction on \(n \) that if a chain \(S_n \) has \(n \) vertices then \(P(k; G) = k(k - 1)^{n-1} \).

8. Let \(G = (X, E) \) be a graph with \(n \) vertices. The chromatic number, \(\chi(G) \), is the smallest number \(k \) such that there is a function \(f : X \rightarrow \{0, 1, \ldots, k-1\} \) such that for all \(x, y \in X \) (where \(x \neq y \)) one has that \(\{x, y\} \in E \) implies that \(f(x) \neq f(y) \). Recall that \(\alpha(G) \) the largest size of an independent set in \(G \), that is a set \(Y \subseteq X \) such that for all \(x, y \in Y \) (where \(x \neq y \)) one has \(\{x, y\} \notin E \).

Show that \(\alpha(G) \geq n/\chi(G) \).