1. For each of the following decision problems describe a certificate that shows the problem belongs to \(NP \).

(i) **SUBSET SUM**

Input: a finite set \(A \subseteq \mathbb{N} \setminus \{0\} \) and an integer \(k \).

Question: is there a subset of \(A \) whose sum is exactly \(k \)?

(ii) **HAMPATH**

Input: graph \(G \), vertices \(a \) and \(b \)

Question: Is there a Hamiltonian path from \(a \) to \(b \) in \(G \)?

(Definition:) Let \(G = (X,E) \) be a graph. If \(a, b \in X \) are vertices a path from \(a \) to \(b \) is a finite sequence \(a_0, a_1, \ldots, a_n \) with \(a = a_0 \), \(b = a_n \) and \(\{a_i, a_{i+1}\} \in E \) for each \(i < n \). A Hamiltonian path from \(a \) to \(b \) is a path from \(a \) to \(b \) that visits every vertex in the graph exactly once.*

2. Show that \(NP \) is closed under union and intersection.

3. Show that the following problem is \(NP \)-complete:

BOUNDED HALTING

Instance: A non-deterministic Turing machine \(M \), a string \(x \) and a string of \(t \) 1s

Question: Does \(M \) accept \(x \) in at most \(t \) steps?

4. (Satisfiability of DNF formulas). A formula \(F \) is in disjunctive normal form (DNF) if it is of the form \(\phi = \bigwedge_i \bigvee_j l_{ij} \) where the \(l_{ij} \) are Boolean literals.

Let \(SAT_{DNF} = \{ \phi \mid \phi \text{ is in DNF and is satisfiable} \} \).

Prove that the language \(L_{DNF} \) is in \(P \), that is that there is a polynomial-time algorithm that, on input a formula \(\phi \) in DNF, decides whether \(\phi \) is satisfiable.

(Note the contrast with CNF!)