
TENSOR PRODUCTS, RESTRICTION AND

INDUCTION.

ANDREI YAFAEV

Our first aim in this chapter is to give meaning to the notion of
product of characters.

Let V and W be two finite dimensional vector spaces over C with
bases v1, . . . , vm and w1, . . . , wn repectively. Define a symbol vi ⊗ wj.
The tensor product space V ⊗W is the mn-vector spacewith basis

{vi ⊗ wj : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
The symbol vi ⊗ wj is bilinear.

In general, let v =
∑

λivi and w =
∑

µjwj, then

v ⊗ w =
∑

i,j

λiµj(vi ⊗ wj)

For example

(2v1 − v2) ⊗ (w1 + w2) = 2v1 ⊗ w1 + 2v1 ⊗ w2 − v2 ⊗ w2 − v2 ⊗ w2

In other words, to calculate with tensor products, just use the bilin-
earity. Caution Not every tensor can be expressed as v ⊗ w, indeed
v1 ⊗ w1 + v2 ⊗ w2 can not be expressed in this form.

Proposition 0.1. Let e1, . . . , em be a basis of V and f1, . . . , fn a basis
of W . Then

{ei ⊗ fj}
is a basis of V ⊗W .

Proof. It is obvious that these elements generate V ⊗W (by bilinearity)
and there are mn of them, hence it is a basis. �

Suppose now that V and W are C[G]-modules. One defines the
structure of C[G]-module on V ⊗W by

g(vi ⊗ wj) = (gvi) ⊗ (gwj)

By bilinearity we obtain

g(v ⊗ w) = (gv) ⊗ (gw)

It is obvious that this gives V ⊗W a structure of C[G]-module.
1
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Proposition 0.2. Let V and W be C[G]-modules with characters χ
and ψ. The character φ of V ⊗W , is the product χψ:

χψ(g) = χ(g)ψ(g)

Proof. Let g ∈ G. We can diagonalise its action on V and W . Hence
there exist bases {ei} of V and {fi} of W such that

gei = λiei and gfj = µjfj

Then

χ(g) =
∑

λi and ψ(g) =
∑

µj

We obtain

g(ei ⊗ fj) = (gei) ⊗ (gfj) = λiµj(ei ⊗ fj)

As {ei ⊗ fj} forms a basis of V ⊗W , we obtain

φ(g) =
∑

i,j

λiµj = χ(g)ψ(g)

�

This gives meaning to the product of two characters, indeed the
consequence of this proposition is :

Corollary 0.3. The product of two characters is a character.

Take the character table of S4.

gi 1 (12) (123) (12)(34) (1234)
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 −1 2 0
χ4 3 1 0 −1 −1
χ5 3 −1 0 −1 1
χ3χ4 6 0 0 −2 0
χ2

4 9 1 0 1 1

We see that

χ3χ4 = χ4 + χ5; χ2
4 = χ1 + χ3 + χ4 + χ5

We show the following:

Proposition 0.4. Let χ be a character of G and let λ be a linear

character (recall that it means that the degree of λ is one). Suppose χ
is irreducible, then λχ is irreducible.
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Proof. For any g, lambda(g) is a root of unity, therefore λ(g)λ(g) = 1.
We calculate:

< λχ, λχ >=
1

|G|
∑

g

χ(g)λ(g)χ(g)λ(g) =< χ, χ >= 1

hence λχ is irreducible. �

We will now see how to decompose the character χ2 and

apply it to character tables of symmetric groups.

Let V be a C[G]-module with character χ, the module V ⊗ V has
character χ2. Define the linear transformation

T (vi ⊗ vj) = vj ⊗ vi

Then for all v, w, we have T (v ⊗ w) = w ⊗ v.
Let

S(V⊗V ) = {x ∈ V⊗V : T (x) = x}, A(V⊗V ) = {x ∈ V⊗V : T (x) = −x}
called the symmetric and antisymmetric part of V ⊗ V .

The spaces S(V ⊗ V ) and A(V ⊗ V ) are C[G]-submodules and

V ⊗ V = S(V ⊗ V ) ⊕ A(V ⊗ V )

It is obvious that T is a C[G]-homomorphism and hence for x ∈ S(V ⊗
V ) and g in G,

T (gx) = gT (x) = gx

hence gx ∈ S(V ⊗ V ). Similarly, A(V ⊗ V ) is a C[G] submodule.
For the direct sum:
x ∈ S(V ⊗ V ) ∩ A(V ⊗ V ), then x = T (x) = −x hence x = 0.
And for any x ∈ V ⊗ V , we have

x =
1

2
(x+ T (x)) +

1

2
(x− T (x))

As T 2 is the identity, we see that 1
2
(x + T (x)) ∈ S(V ⊗ V ) and 1

2
(x−

T (x)) ∈ A(V ⊗ V ).
Note that the symmetric part contains all the tensors v⊗w+w⊗v and

antisymmetric part - all the tensors v⊗w−w⊗v. In fact vi⊗vj +vj⊗vi

(i ≤ j) form a basis of S and vi ⊗ vj − vj ⊗ vi (i < j) form a basis of

A. The dimenasion of S is n(n+1)
2

and that of A is n(n−1)
2

.

Proposition 0.5. Write

χ2 = χS + χA

then,

χS(g) =
1

2
(χ(g)2 + χ(g2)) and χA(g) =

1

2
(χ(g)2 − χ(g2))
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Proof. As usual, choose a basis ei of V such that gei = λiei. Then

g(ei ⊗ ej − ej ⊗ ei) = λiλj(ei ⊗ ej − ej ⊗ ei)

It follows that

χA(g) =
∑

i<j

λiλj

Now, g2ei = λ2
i ei, therefore χ(g) =

∑

λi and χ(g2) = λ2
i . It follows

that

χ(g)2 = (χ(g))2 =
∑

λ2
i + 2

∑

i<j

λiλj = χ(g2) + 2χA(g)

hence

χA(g) =
1

2
(χ2(g) − χ(g2))

and the equality for χS follows from χ2(g) = χA(g) + χS(g). �

Take the character table of S4 above, we get:

χS = χ1 + χ3 + χ4; χA = χ5

1. Character table of S5.

The group S5 has 7 conjugacy classes, as follows

gi g1 = 1 g2 = (12) g3 = (123) g4 = (12)(34) g5 = (1234) g6 = (123)(45) (12345)
|CG(gi)| 120 12 6 8 4 6 5

The group S5 has exactly two irreducible characters of degree one :
χ1 (trivial) and χ2 (sign).

In fact any symmetric group has exactly two irreducible linear char-
acters : the trivial and the sign. This is a consequence of the fact that
An is the derived subgroup of Sn, hence any homomorphism from Sn

into a commutative group factors through An. The quotient Sn/An is
of order two hence the non-trivial element is sent either to 1 or −1.
This gives exactly two linear characters.

Here is a generality on the permutation character of Sn.
Let G = Sn be the symmetric group. It has a natural n-dimensional

representation defined by

gei = egi

(the permutation representation). Let π be its character.
For g ∈ G, define

fix(g) = {i : 1 ≤ i ≤ n and gi = i}
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Then

π(g) = |fix(g)|
Proposition 1.1. Let G be a subgroup of Sn, let µ : G −→ C be the
function defined by

µ(g) = |fix(g)| − 1

Then µ is a character of G.

Proof. The permutation representation V always has an invariant sub-
space which is

U = Span(u1 + u2 + · · · + un)

By Mashke’s theorem it has a complement W , a C[G]-submodule such
that

V = U ⊕W

Let µ be the character of W , then

π = 1G + µ

where 1G(g) = 1 for all g. We then have

µ(g) = |fix(g)| − 1

�

Going back to S5, we let χ3 be the permutation character.
Let us determine the values of χ3.

(1) |fix(1)| = 5 hence χ3(1) = 4
(2) |fix(1, 2)| = 3 hence χ3((1, 2)) = 2
(3) |fix(1, 2, 3)| = 2 hence χ3((1, 2, 3)) = 1
(4) |fix(1, 2)(3, 4)| = 1 hence χ3((1, 2)(3, 4)) = 0
(5) |fix(1, 2, 3, 4)| = 1 hence χ3((1, 2, 3, 4)) = 0
(6) |fix(1, 2, 3)(4, 5)| = 0 hence χ3((1, 2, 3)(4, 5)) = −1
(7) |fix(1, 2, 3, 4, 5)| = 0 hence χ3((1, 2, 3, 4, 5)) = −1

The values of χ3 are as follows 4, 2, 1, 0, 0,−1,−1. We calculate

< χ3, χ3 >= 42/120 + 22/12 + 12/6 + (−1)2/6 + (−1)2/5 = 1

It follows that the character χ3 is irreducible.
Now, χ4 = χ3χ2 is also irreeducible.

We already have 4 irreducible characters.
Need three more...
Consider χ2

3 = χS + χA.
We have

χS(g) =
1

2
(χ3(g)

2 + χ3(g
2))
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and

χA(g) =
1

2
(χ3(g)

2 − χ3(g
2))

To calculate values of χS and χA, we calculate: 12 = 1, g2
2 = 1,

g2
3 ∼ g3, g

2
4 = 1, g2

5 ∼ g4, g
2
6 ∼ g3, g

2
7 ∼ g7.

We find χS : 10, 4, 1, 2, 0, 1, 0 and χA : 6, 0, 0,−2, 0, 0, 1. Call it χ5.
One caclulates : < χA, χA >= 1 hence χA is a new irreducible

character.
Notice here that χ2χA = χA hence multiplying by χ2 does not give

a new character.
Now look at χS. We have < χS, χS >= 3 hance χS is a sum of three

irreducible characters.
Next :

< χS, χ1 >= 10/120 + 4/12 + 1/6 + 2/8 + 1/6 = 1,

< χS, χ3 >= 40/120 + 8/12 + 1/6 − 1/6 = 1,

< χS, χS >= 100/120 + 16/12 + 1/6 + 4/8 + 1/6 = 3

Write χS =
∑

λiχi, we have
∑

λ2
i = 3 hence exactly three λis are

equal to 1 and we already have λ1 = λ3 = 1.
Therefore

χS = χ1 + χ3 + ψ

where ψ is some irreducible character.
We have

χS(1) = χ1(1) + χ3(1) + ψ(1) =
1

2
(χ3(1)2 + χ3(1)) =

1

2
(16 + 4) = 10

As χ1(1) = 1 and χ3(1) = 4, we find that ψ(1) = 5.
Hence ψ is a new irreducible character, we let χ6 = ψ. Using

χ6(g) = χ

We find

χ6 : 5, 1,−1, 1,−1, 1, 0

Finally, χ7 = χ6χ2 is the last character.
We get the complete character table for S5:
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gi g1 = 1 g2 g3 g4 g5 g6 g7

χ1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1
χ3 4 2 1 0 0 −1 −1
χ4 4 −2 1 0 0 1 −1
χ5 6 0 0 −2 0 0 1
χ6 5 1 −1 1 −1 1 0
χ7 5 −1 −1 1 1 −1 0

Notice that all entries are integers !

2. Character table of S6.

The group S6 is of order 720.
It has 11 conjugugacy classes.
We denote them by their shape :

g1 = 1, g2 = (2), g3 = (3), g4 = (2, 2), g5 = (4), g6 = (3, 2), g7 = (5)

g8 = (2, 2, 2), g9 = (3, 3), g10 = (4, 2), g11 = (6)

The sizes of centralisers are 720, 48, 18, 16, 8, 6, 5, 48, 18, 8, 6.
As before we have two linear characters χ1 and χ2.
Next, as before, consider the permutation character : χ3(g) = |fix(g)|−

1, the values of χ3 are 5, 3, 2, 1, 1, 0, 0,−1,−1,−1,−1 and one calculates

< χ3, χ3 >= 1

We get another irreducible character by setting χ4 = χ2χ3.
Next, as before we consider

χ2
3 = χS + χA

We have

gi g1 = 1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

χ3 5 3 2 1 1 0 0 −1 −1 −1 −1
χS 15 7 3 3 1 1 0 3 0 1 0
χA 10 2 1 −2 0 −1 0 −2 1 0 1

One finds that < χA, χA >= 1. We let χ5 = χA, this is the new
irreducible character.

In this case (unlike in the case of S5), χ2χ5 = χ6 is a new irreducible
character.

Finally, we calculate:

< χS, χS >= 3, < χS, χ1 >= 1, < χS, χ3 >= 1
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hence, as before there is an irreducible character ψ such that

χS = χ1 + χ3 + ψ

This gives χ7 of degree 9 and χ8 = χ2χ7 is another irreducible char-
acter. The table so far is as follows:

gi g1 = 1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11

χ1 1 1 1 1 1 1 1 1 1 1 1
χ2 1 −1 1 1 −1 −1 1 −1 1 1 −1
χ3 5 3 2 1 1 0 0 −1 −1 −1 −1
χ4 5 −3 2 1 −1 0 0 1 −1 −1 1
χ5 10 2 1 −2 0 −1 0 −2 1 0 1
χ6 10 −2 1 −2 0 −1 0 2 1 0 −1
χ7 9 3 0 1 −1 0 −1 3 0 1 0
χ8 9 −3 0 1 1 0 −1 −3 0 1 0

We will recover the three remining characters from orthogonality
relations.

Let s be the permutation (1, 2) and t the permutation (1, 2)(3, 4),
these are elements of order two. It is a general fact that if g has order
two, then χ(g) is an integer. Indeed, χ(g) is a sum of square roots of
one, they are ±1.

Let χ9, χ10 and χ11 be the three remaining characters.
Column orthogonality gives:

11
∑

i=1

χi(s) = 48 = |CG(s)|

Hence

χ9(s)
2 + χ10(s)2 + χ11(s)

2 = 2

By reodering the characters, we assume that

χ9(s)
2 = χ10(s)2 = 1 and χ11(s)

2 = 0

Now, the character χ2χ9 is an irreducible character not equal to any
of the χ1, . . . , χ8 (because they come in pairs !)

By definition of χ2, we have

χ2χ9(s) = χ2(s)χ9(s) = −χ9(s)

As χ9(s) = ±1, we see that χ2χ9 6= χ9 and can not be equal to χ11

(χ11(s) = 0) hence

χ2χ9 = χ10
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After, if necessary, renumbering the characters, we have

χ9(s) = 1, χ10(s) = −1

We have completely determined the values of χis at s. Now we have
the table

gi 1 s t
χ9 a 1 d
χ10 b −1 e
χ11 c 0 f

Write orthogonality relations:
∑

χi(1)χi(s) = 0
∑

χi(s)χi(t) = 0

∑

χi(t)χi(t) = 16
∑

χi(1)χi(t) = 0

This gives

a− b = 0 d− e = 0

d2 + e2 + f 2 = 2 ad+ be+ cf = 10

and it is easy to see that the only solutions in integers are

d = e = 1 f = 0 a = b = 5

Finally, using
∑

i χi(1)2 = 720 gives c = 16.
The rest of the table is determined by column orthogonality...

3. Restriction and induction.

Let H be a subgroup of G. Then C[H] ⊂ C[G] and any C[G]-module
V can be viewed as a C[H]-module. This is called the restriction from
G to H and we denote this module

V ↓ H
Let χ be the character of V . The character of V ↓ H is obtained from
χ by evaluating it on elements of H only, we denote it χ ↓ H. We
call it the restriction of χ to H. Viewing χ as a function from G to C,
χ ↓ H is simply the restriction of this function to H.

The inner product of characters of G, <,>G yields, by restriction
the inner product <,>H of characters of H. If χ is a character of G
and ψi are irreducible characters of H, we have

χ ↓ H = d1ψi + · · · + drψr

and we have

di =< χ ↓ H,ψi >H

They satisfy the following
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Proposition 3.1. Let χ be an irreducible character of G and ψ1, . . . , ψr

irreducible characters of H. Then

χ ↓ H = d1ψ1 + · · · + drψr

where the di satisfy
∑

d2
i ≤ |G : H|

with equality if and only if χ(g) = 0 for all g ∈ G\H.

Proof. We have
∑

d2
i =< χ ↓ H,χ ↓ H >H=

1

|H|
∑

h∈H

χ(h)χ(h)

As χ is an irreducible character, we have

1 =< χ, χ >G=
1

|G|
∑

h∈H

χ(h)χ(h) +K =
|H|
|G|

∑

d2
i +K

with K = 1
|G|

∑

g/∈H χ(g)χ(g). Of course K ≥ 0 and K = 0 if and only

if χ(g) = 0 for all g /∈ H. �

We have the following:

Proposition 3.2. Let H be a subgroup of G and ψ a non-zero character
of H. There exists an irreducible character χ of G such that

< χ ↓ H,ψ >6= 0

Proof. Let χi be irreducible characters of G and let χreg be the regular
character. We have

χreg =
r

∑

i=1

χi(1)χi

Now

0 6= |G|
|H|ψ(1) =< χreg ↓ H,ψ >H=

∑

χi(1) < χi ↓ H,ψ >H

(the first equality here comes from the fact that χreg(1) = |G| and zero
otherwise).

It follows that some < χi ↓ H,ψ >6= 0. �

We can obtain more information when H is a normal subgroup

of G.

Theorem 3.3 (Clifford’s theorem). Suppose H is a normal subgroup
of G and let χ be an irreducible character of G. Write

χ ↓ H = d1ψ1 + · · · + drψr

Then
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(1) The ψis all have the same degree.
(2)

χ ↓ H = e(ψ1 + · · · + ψm)

Proof. Let V be a C[G]-module with character χ (necessarily irre-
ducible) and U an irreducible C[H]-submodule of V ↓ H. For g ∈ G,
let

gU = {gv : v ∈ U}
AsH is a normal subgroup ofG (gHg−1 = H), gU is a C[H]-submodule
of V ↓ H. If W is a C[H]-submodule of gU , then g−1W is a C[H]-
submodule of V . Now, U is ireducible, hence W = {0} or W = gU . It
follows that gU is an irreducible submodule of V ↓ H.

Of course all gU have the same dimension. We have a direct sum
decomposition:

V ↓ H = ⊕g∈GgU

(the sum is direct because modules are simple) and ψis are characters
of some of the gUs which all have the same dimension (equal to di).
This proves the first claim.

For the second, let
e =< χ ↓ H,ψ1 >

and let X1 be the submodule of V ↓ H whose chaacter is eψ1. Then

X1 = U1 ⊕ · · · ⊕ Ue

where each Ue has character ψ1.
Now, for any g in G, gX1 is a direct sum of isomorphic C[H]-modules

gUi

We just need an argument to show that they are isomorphic. We
have Ui

∼= Uj and we need to show that gUi
∼= gUj. If φ : Ui −→ Uj

is an isomorphism of C[H]-modules, then θ : gUi −→ gUj defined by
θ(gu) = gφ(u). Verifications that this is a C[H] morphism (using the
fact that H is normal) are left to the reader.

The module V ↓ H is a sum of the gX1. We write

V ↓ H = X1 ⊕ · · · ⊕Xm

where Xis are gX1 for some g ∈ G and pairwise non-isomorphic.
It follows that

χ ↓ H = e(ψ1 + · · · + ψm)

�

Suppose now that the index of H in G is two. We will typically
be interested in An ⊂ Sn. Then for any irreducible character χ of
G, either χ ↓ H is irreducible or χ ↓ H is a sum of two irreducible
characters of the same degree.
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To see this, write

χ ↓ H = d1ψ1 + · · · + drψr

where
∑

i d
2
i ≤ 2. Hence dis are either 1, 1 or 1.

As we have G/H ∼= C2, we can define a character λ of G by

λ(g) = 1 if g ∈ H

and

λ(g) = −1 if g /∈ H

In the case G = Sn and H = An, this is simply the sign.
Now, for irreducible characters χ of G, χ and λχ are irreducible of

the same degree. We have

Proposition 3.4. The following are equivalent

(1) χ ↓ H is irreducible
(2) χ(g) 6= 0 for some g ∈ G with g /∈ H
(3) The characters χ and λχ are not equal.

We have seen that
∑

di < 2 (strict inequality)if and only if χ(g) 6= 0
for some g ∈ G and g /∈ H. The inequality is strict precisely when
∑

d2
i < 2.

Also λχ(g) = χ(g) if g ∈ H and −χ(g) is g /∈ H. So χ(g) 6= 0 for
g /∈ H if and only if λχ 6= χ.

Proposition 3.5. Suppose that H is a normal subgroup of index 2 in
G and that |chi is an irreducible character of G such that χ ↓ H is
irreducible.

If φ is an irreducible character of G which satisfies

φ ↓ H = χ ↓ H
then either φ = χ or φ = χλ.

Proof. We have

(χ+ λχ) = 2χ(g) if g ∈ H and 0 otherwise

Therefore

< χ+ λχ, φ >=
1

|G|
∑

g∈H

2χ(g)φ(g) =
1

H

∑

g∈H

χ(g)φ(g)

But < χ ↓ H,φ ↓ H >= 1 and φ ↓ H = χ ↓ H hence < χ+λχ, φ >= 1
which implies that either φ = χ or φ = λχ. �

Finaly we analyse the case where the character χ ↓ H is reducible.
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Proposition 3.6. Suppose that H is a normal subgroup of index two
of G and χ an irreducible character of G for which χ ↓ H is the sum
of two irreducible characters χ ↓ H = ψ1 +ψ2. If φ is a character such
that φ ↓ H has ψ1 or ψ2 in its decomposititon, then φ = χ.

Proof. We have χ(g) = 0 for g /∈ H, therefore

< φ, χ >G=
1

2
< φ ↓ H,χ ↓ H >H

if φ ↓ H has ψ1 or ψ2 as constituent, then < φ ↓ H,χ ↓ H >H 6= 0
hence < φ, χ >G 6= 0 in which case it must be one. Therefore φ = χ (χ
is irreducible !). �

To summarise:

Suppose G is a finite group and H a subgroup of index 2.

(1) Each irreducible character χ of G non-zero somewhere out-

side of H restricts to an irreducible character of H.
These characters come in pairs χ and λχ, they restrict

to the same character on H.
(2) If χ irreducible on G is zero everywhere outside H, then

χ restricts to the sum of two distinct irreducible characters of

same degree.
These two characters come from no other irreducible charac-

ter of G.
(3) Every irreducible character appears among those obtained by

restricting irreducible characters of G.
Let ψ be an irreducible character of H. There exists χ ir-

reducible of G such that < χ ↓ H,ψ >6= 0. Now, either
χ ↓ H is irreducible in which case χ ↓ H = ψ (necessarily
< χ ↓ H,ψ >= 1) or χ ↓ H = ψ1 + ψ2 in which case we see
that ψ is ψ1 or ψ2.

Let us apply what preceeded to A5.
The group H = A5 is of order 60 and is a normal subgroup of index

2 in S5. It has 5 conjugacy classes g1 = 1, g2 = (123), g3 = (1, 2)(3, 4),
g4 = (12345) and g5 = (13452) and centraliserz have sizes 60, 3, 4, 5
and 5.

Look at our 7 characters χ1, . . . , χ7 of S5 and the table we constructed
previously. We see that χ1, χ3 and χ6 are nonzero somewhere outside
of A4. Therefore χ1 ↓ H = ψ1, χ3 ↓ H = ψ3 and χ6 ↓ H = ψ6 give
three irreducible characters of H.

Notice that χ5(g) = 0 for g /∈ H. Hence χ5 ↓ H = ψ4 + ψ5 where ψ4

and ψ5 are distinct irreducible characters of H and they are of degree
three (they have the same degree and ψ4(1) + ψ5(1) = χ5(1) = 6).
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Because χ2 and χ1 restrict to the same character; χ4, χ3 restrict to
the same character and χ7, χ6 restrict to the same character, we see
that ψ1, . . . , ψ5 are distinct irreducible characters of A5 and this is a

complete list.
We have the table:

gi g1 = 1 g2 g3 g4 g5

ψ1 1 1 1 1 1
ψ2 4 1 0 −1 −1
ψ3 5 −1 1 0 0
ψ4 3 α2 α3 α4 α5

ψ5 3 β2 β3 β4 β5

We will recover αis and βis by column orthogonality.
Because χ5 ↓ H = ψ4 + ψ5, we have

α2 + α2 = 0, α3 + α3 = −2, α4 + β4 = α5 + β5 = 1

By column orthogonality, we get

3 = 3 + α2
1 + α2

2

4 = 2 + α2
3 + β2

3

5 = 2 + α2
4 + β2

4 = 2 + α2
5 + β2

5

This immediately gives α2 = β2 = 0 and α3 = β3 = −1.
Next, α4 and β4 are roots of the quadratic equation

x2 − x− 1 = 0

This gives

α4 =
1 +

√
5

2
, β4 =

1 −
√

5

2
Similarly (and because ψ4 6= ψ5),

α5 =
1 +

√
5

2
, β5 =

1 −
√

5

2
This gives a complete table for A5. Notice, that unlike in the case of

S5, the values of characters are not integers, in fact they are not even
rational.

4. Induction and Frobenius reciprocity.

Let H be a subgroup of a finite group G.
Let U be a C[H]-submodule of C[H] ⊂ C[G]. We let U ↑ G the

C[G]-submodule C[G]U of C[G]
This U ↑ G is a C[G]-submodule of C[G] called the C[G]-submodule

induced from U .
The following properties are left without proofs.
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Proposition 4.1. (1) If U and V are C[H]-submodules of C[H]
and U is C[H]-isomorphic to V . Then U ↑ G is C[G]-isomorphic
to V ↑ G.

(2) (this is the corrolary of the above) Let U be a C[H]-submodule
of C[H]. Suppose that

U = U1 ⊕ · · · ⊕ Um

where Uis are C[H]-submodules. Then

U ↑ G = U1 ↑ G⊕ · · · ⊕ Um ↑ G

The second property allows to define the induced module for any

C[H]-module (it is always a direct sum of submodules of C[H]).
Ona can define the induced representation by choosing the set of

representatives for the coset space G/H, then form the direct sum

⊕e∈G/HeV

with a natural action of G.
If V is a C[H] module, then

dim(V ↑ G) = [G : H] dim(V )

It is easy to see the following (which shows that the induction is
transitive):

Theorem 4.2. Suppose H and K are subgroups of G such that H ⊂
K ⊂ G. If U is a C[H]-module, then

(U ↑ K) ↑ G ∼= U ↑ G

A few examples of induced representations.

(1) Let 1H be the trivial representation of H. Then 1H ↑ G is the
premutation representation on G/H (the set of cosets.) That
means, 1H ↑ G acts as xH 7→ gxH.

For example the representation induced on Sn by the trivial
representation of An is the 2-dimensional representation ρ as
follows : Choose basis {e−1, e1}, then ei is sent to eǫ(σ).

We see that e1+e−1 is a stable subspace, so is e1−e−1. Hence
ρ is the sum of two one dimensional representations : the trivial
one and the non-trivial one.

The induces representation induced by the trivial represen-
tation of the trivial subgroup

(2) The induced representation of the regular representation of H
is the regular representation of G.
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Another example of induced representation.
Take G = S3. This is generated by (1, 2, 3) and σ = (1, 2). Let H be

the subgroup generated by (1, 2, 3); it is cyclic of order three. Consider
the usual representation ρH : (1, 2, 3) 7→ ζ3 on the one-dimennsional
vector space V . We know already that ρH ↑ G will be two dimensional.

We have
V ↑ G = V ⊕ σV

Let v1 be the basis of V and v2 = (1, 2)v1.
Then 1 acts as the identity (this is always the case).

(1, 2)v1 = v2, (1, 2)v2 = v1

Hence (1, 2) is represented by the matrix

(

0 1
1 0

)

We have (1, 2, 3)v1 = ζ3v1. Now, notice that (1, 2, 3)(1, 2) = (1, 2)(1, 2, 3)2(=
(1, 3)). This gives

(1, 2, 3)v2 = (1, 2, 3)(1, 2)v1 = (1, 2)(1, 2, 3)2v1 = ζ2
3 (1, 2)v1 = ζ2

3v2

this gives

(1, 2, 3) 7→
(

ζ3 0
0 ζ2

3

)

That completely determines the induced representation.
If ψ is a character of H, let U be an C[H]-module of which ψ is a

character. The the character ψ ↑ G of U ↑ G is called the induced
character (from ψ).

Our aim is to prove the following theorem:

Theorem 4.3 (Frobenius reciprocity theorem). Let H be a subgroup
of G. Let χ be a character of G and let ψ be a character of H. Then

< ψ ↑ G,χ >G=< ψ, χ ↓ H >H

We will use a lemma:

Lemma 4.4. Let V and W be C[G]-modules with characters χ and ψ
respectively. Then

dim(HomC[G](V,W )) =< χ,ψ >

Proof. Write
V = V c1

1 ⊕ · · · ⊕ V cm

m

where Vis are simple submodules of C[G]. Similarly

W = V d1

1 ⊕ · · · ⊕ V dm

k
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By Shur’s lemma

dim(HomC[G](Vi, Vj)) = δi,j

It follows that

dim(HomC[G](V,W )) =
k

∑

i=1

cidi

But on the other hand:

χ =
∑

ciχi and ψ =
∑

diχi

(where χis are all characters of G). It follows that

< χ,ψ >=
∑

cidi

�

Another lemma.

Lemma 4.5. Let U be a C[H]-submodule of C[H] and V a C[G]-
submodule of C[G]. Then

dimHomC[G](U ↑ G, V ) = dimHomC[H](U, V ↓ H)

Proof. Let φ ∈ HomC[G](U ↑ G, V ) and let φ ∈ HomC[H](U, V ↓ H) be
the restriction of φ to U . The map

φ 7→ φ

is obviously C-linear. We will show that this is an isomorphism.

We are going to use the following lemma:

Lemma 4.6. Let G be a finite group and H a subgroup. Let U be a
C[H]-submodule of C[H]. Let θ be a C[H]-homomorphism from U to
C[G]. Then there exists an r in C[G]

θ : u 7→ ur

Proof. Let θ be a homomorphism U −→ C[G]. Let W be a C[H]-
module such that C[G] = U ⊕W . Define α : C[G] −→ C[G] by α(u +
w) = θ(u).

Then α is an endomorphism of C[G], viewed as C[H]-module.
Let r = α(1) ∈ C[G]. Then

α(u) = θ(u) = α(1u) = α(1)α(u) = ru

because u ∈ U ⊂ C[H] �
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First let us show the surjectivity.
Let φ ∈ HomC[H](U, V ↓ H). There exists r ∈ C[G] such that

φ(u) = ur. Define θ : U ↑ G −→ C[G] by

θ(s) = sr

Then θ ∈ HomC[G](U ↑ G, V ) and θ = φ. This proves the surjectivity.
Now, suppose ur1 = ur2 for all u ∈ U , then gur1 = gur2 for all

g ∈ G, u ∈ U , hence sr1 = sr2 for all s ∈ U ↑ G. It follows that θ −→ θ
is injective.

This finishes the proof. �

Now, to derive the Frobenius reciprocity, we just write

χ =
∑

diχi and ψ =
∑

ejψj

Then

< ψ ↑ G,χ >G=
∑

i,j

ejdi < ψj ↑ G,χi >G=
∑

i,j

ejdi < ψj, χi ↓ H >H=< ψ, χ ↓ H >H

This finishes the proof of Frobenius reciprocity.
Let us illustrate this with the example G = S3.
We have three conjugacy classes and the character table is as follows:

g 1 (1, 2) (123)
CG(g) 6 2 3
χ1 1 1 1
χ2 1 −1 1
χ3 2 0 −1

and the subgroup H =< a = (123) > and let χ the character of
(123) 7→ ζ. The conjugacy classes of H are of course 1, a, a2 and the
values taken by χ are 1, ζ, ζ2. Let ψ1, ψ2, ψ3 be the three irreducible
characters of H. Here χ = ψ2.

We know that χ ↑ G = χ3. Its values are 2, 0,−1.
Notice that because χ3 is irreducible, < χ3, χ2 >= χ3, χ1 >= 0
The values taken by χ3 ↓ H are 2,−1,−1. Notice that this is χ3 ↓

H = ψ2 + ψ3.
We have
Let us calculate

< χ ↑ G,χ3 >=< χ3, χ3 >= 1

Now,

< χ, χ3 ↓ H >=< ψ2, ψ2 + ψ3 >= 1 + 0 = 1

They agree as predicted by Frobenius reciprocity.
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4.1. Values of induced characters. There is a simple way to eval-
uate the values of induced characters. Let ψ be a character of H and
define the function ψ : G −→ C by ψ(g) if g ∈ H and 0 otherwise (we
extends φ by zero.)

Proposition 4.7. The values of ψ ↑ G are given by

(ψ ↑ G)(g) =
1

|H|
∑

y∈G

ψ(y−1gy)

for g ∈ G.

Proof. Define f(g) = 1
|H|

∑

y∈G ψ(y−1gy). We wish to prove that f =

ψ ↑ G. It is trivial to check that f(w−1gw) = f(g) hence f is a class
function. Rememeber that irreducible characters form a basis of the
vector space of class functions. To show that f = ψ, is suffices to check
that

< f, χ >G=< ψ ↑ G,χ >G

for all irreducible characters of G. Let χ be an irreducible character.

< f, χ >G=
1

|G|
∑

g∈G

f(g)χ(g) =
1

|G||H|
∑

g,y∈G

ψ(y−1gy)χ(g)

Let x = y−1gy. Then

< f, χ >G=
1

|G||H|
∑

x,y∈G

ψ(x)χ(yxy−1)

Now, ψ(x) = 0 if x /∈ H and χ(yxy−1) = χ(x) for all y ∈ G. Therefore

< f, χ >G=
1

|H|
∑

x∈H

ψ(x)χ(x) < ψ, χ ↓ H >H

Now, by Frobenius reciprocity, < f, χ >G=< ψ ↑ G,χ >G which shows
exactly that f = ψ ↑ G. �

Corollary 4.8.

(ψ ↑ G)(1) =
|G|
|H|ψ(1)

This is immediate.
Let x ∈ G Define a class function fG

x on G by fG
x (y) = 1 if y ∈ xG and

0 otherwise. (this is simply the characteristic function of the conjugacy
class xG).

Proposition 4.9. Let χ be a character of G and x ∈ G. Then

< χ, fG
x >G=

χ(x)

|CG(x)
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Proof. This is an easy calculation.

< χ, fG
x >G=

1

|G|
∑

g∈G

χ(g)fG
x (g) =

1

|G|
∑

g∈xG

χ(g)

=
|xG|
|G| χ(x) =

χ(x)

|CG(x)|
�

Proposition 4.10. Let ψ be a character of H ⊂ G and x ∈ G.

(1) if no element of xG lies in H, then (ψ ↑ G)(x) = 0
(2) if some element of xG lies in H, then

(ψ ↑ G)(x) = |CG(x)|( ψ(x1)

|CG(x1)|
+ · · · + ψ(xm)

|CG(xm)|)

where x1, . . . , xm ∈ H and fG
x ↓ H = fH

x1
+ · · · + fH

xm
.

Proof. We have

(ψ ↑ G)(x)

|CG(x)| =< ψ ↑ G, fG
x >G=< ψ, fG

x ↓ H >H

If no element of xG lies in H, then fG
x ↓ H = 0 and hence (ψ ↑ G)(x) =

0
Otherwise

(ψ ↑ G)(x)

|CG(x)| =< ψ, fH
x1

+· · ·+fH
xm

>H= |CG(x)|( ψ(x1)

|CG(x1)|
+· · ·+ ψ(xm)

|CG(xm)|)

�


