TENSOR PRODUCTS, RESTRICTION AND INDUCTION.

ANDREI YAFAEV

Our first aim in this chapter is to give meaning to the notion of **product** of characters.

Let V and W be two finite dimensional vector spaces over \mathbb{C} with bases v_1, \ldots, v_m and w_1, \ldots, w_n repectively. Define a **symbol** $v_i \otimes w_j$. The tensor product space $V \otimes W$ is the *mn*-vector spacewith basis

$$\{v_i \otimes w_j : 1 \le i \le m, 1 \le j \le n\}$$

The symbol $v_i \otimes w_j$ is bilinear.

In general, let $v = \sum \lambda_i v_i$ and $w = \sum \mu_j w_j$, then

$$v \otimes w = \sum_{i,j} \lambda_i \mu_j (v_i \otimes w_j)$$

For example

 $(2v_1 - v_2) \otimes (w_1 + w_2) = 2v_1 \otimes w_1 + 2v_1 \otimes w_2 - v_2 \otimes w_2 - v_2 \otimes w_2$

In other words, to calculate with tensor products, just use the bilinearity. **Caution** Not every tensor can be expressed as $v \otimes w$, indeed $v_1 \otimes w_1 + v_2 \otimes w_2$ can not be expressed in this form.

Proposition 0.1. Let e_1, \ldots, e_m be a basis of V and f_1, \ldots, f_n a basis of W. Then

$$\{e_i \otimes f_j\}$$

is a basis of $V \otimes W$.

Proof. It is obvious that these elements generate $V \otimes W$ (by bilinearity) and there are mn of them, hence it is a basis.

Suppose now that V and W are $\mathbb{C}[G]$ -modules. One defines the structure of $\mathbb{C}[G]$ -module on $V \otimes W$ by

$$g(v_i \otimes w_j) = (gv_i) \otimes (gw_j)$$

By bilinearity we obtain

$$g(v \otimes w) = (gv) \otimes (gw)$$

It is obvious that this gives $V \otimes W$ a structure of $\mathbb{C}[G]$ -module.

Proposition 0.2. Let V and W be $\mathbb{C}[G]$ -modules with characters χ and ψ . The character ϕ of $V \otimes W$, is the product $\chi\psi$:

$$\chi\psi(g) = \chi(g)\psi(g)$$

Proof. Let $g \in G$. We can diagonalise its action on V and W. Hence there exist bases $\{e_i\}$ of V and $\{f_i\}$ of W such that

$$ge_i = \lambda_i e_i$$
 and $gf_j = \mu_j f_j$

Then

$$\chi(g) = \sum \lambda_i \text{ and } \psi(g) = \sum \mu_j$$

We obtain

$$g(e_i \otimes f_j) = (ge_i) \otimes (gf_j) = \lambda_i \mu_j (e_i \otimes f_j)$$

As $\{e_i \otimes f_j\}$ forms a basis of $V \otimes W$, we obtain

$$\phi(g) = \sum_{i,j} \lambda_i \mu_j = \chi(g) \psi(g)$$

This gives meaning to the **product of two characters**, indeed the consequence of this proposition is :

Corollary 0.3. The product of two characters is a character.

Take the character table of S_4 .

g_i	1	(12)	(123)	(12)(34)	(1234)
χ_1	1	1	1	1	1
χ_2	1	-1	1	1	-1
χ_3	2	0	-1	2	0
χ_4	3	1	0	-1	-1
χ_5	3	-1	0	-1	1
$\chi_3\chi_4$	6	0	0	-2	0
χ_4^2	9	1	0	1	1

We see that

$$\chi_3\chi_4 = \chi_4 + \chi_5; \quad \chi_4^2 = \chi_1 + \chi_3 + \chi_4 + \chi_5$$

We show the following:

Proposition 0.4. Let χ be a character of G and let λ be a **linear** character (recall that it means that the degree of λ is one). Suppose χ is irreducible, then $\lambda \chi$ is irreducible.

Proof. For any g, lambda(g) is a root of unity, therefore $\lambda(g)\overline{\lambda(g)} = 1$. We calculate:

$$<\lambda\chi,\lambda\chi>=rac{1}{|G|}\sum_{g}\chi(g)\lambda(g)\overline{\chi(g)\lambda(g)}=<\chi,\chi>=1$$

hence $\lambda \chi$ is irreducible.

We will now see how to decompose the character χ^2 and apply it to character tables of symmetric groups.

Let V be a $\mathbb{C}[G]$ -module with character χ , the module $V \otimes V$ has character χ^2 . Define the linear transformation

$$T(v_i \otimes v_j) = v_j \otimes v_i$$

Then for all v, w, we have $T(v \otimes w) = w \otimes v$. Let

$$S(V \otimes V) = \{x \in V \otimes V : T(x) = x\}, \quad A(V \otimes V) = \{x \in V \otimes V : T(x) = -x\}$$

called the symmetric and antisymmetric part of $V \otimes V$.

The spaces $S(V \otimes V)$ and $A(V \otimes V)$ are $\mathbb{C}[G]$ -submodules and

 $V \otimes V = S(V \otimes V) \oplus A(V \otimes V)$

It is obvious that T is a $\mathbb{C}[G]$ -homomorphism and hence for $x \in S(V \otimes V)$ and g in G,

$$T(gx) = gT(x) = gx$$

hence $gx \in S(V \otimes V)$. Similarly, $A(V \otimes V)$ is a $\mathbb{C}[G]$ submodule. For the direct sum:

 $x \in S(V \otimes V) \cap A(V \otimes V)$, then x = T(x) = -x hence x = 0. And for any $x \in V \otimes V$, we have

$$x = \frac{1}{2}(x + T(x)) + \frac{1}{2}(x - T(x))$$

As T^2 is the identity, we see that $\frac{1}{2}(x + T(x)) \in S(V \otimes V)$ and $\frac{1}{2}(x - T(x)) \in A(V \otimes V)$.

Note that the symmetric part contains all the tensors $v \otimes w + w \otimes v$ and antisymmetric part - all the tensors $v \otimes w - w \otimes v$. In fact $v_i \otimes v_j + v_j \otimes v_i$ $(i \leq j)$ form a basis of S and $v_i \otimes v_j - v_j \otimes v_i$ (i < j) form a basis of A. The dimension of S is $\frac{n(n+1)}{2}$ and that of A is $\frac{n(n-1)}{2}$.

Proposition 0.5. Write

$$\chi^2 = \chi_S + \chi_A$$

then,

$$\chi_S(g) = \frac{1}{2}(\chi(g)^2 + \chi(g^2)) \text{ and } \chi_A(g) = \frac{1}{2}(\chi(g)^2 - \chi(g^2))$$

Proof. As usual, choose a basis e_i of V such that $ge_i = \lambda_i e_i$. Then

$$g(e_i \otimes e_j - e_j \otimes e_i) = \lambda_i \lambda_j (e_i \otimes e_j - e_j \otimes e_i)$$

It follows that

$$\chi_A(g) = \sum_{i < j} \lambda_i \lambda_j$$

Now, $g^2 e_i = \lambda_i^2 e_i$, therefore $\chi(g) = \sum \lambda_i$ and $\chi(g^2) = \lambda_i^2$. It follows that

$$\chi(g)^2 = (\chi(g))^2 = \sum \lambda_i^2 + 2 \sum_{i < j} \lambda_i \lambda_j = \chi(g^2) + 2\chi_A(g)$$

hence

$$\chi_A(g) = \frac{1}{2}(\chi^2(g) - \chi(g^2))$$

and the equality for χ_S follows from $\chi^2(g) = \chi_A(g) + \chi_S(g)$.

Take the character table of S_4 above, we get:

$$\chi_S = \chi_1 + \chi_3 + \chi_4; \quad \chi_A = \chi_5$$

1. Character table of
$$S_5$$
.

The group S_5 has 7 conjugacy classes, as follows

The group S_5 has exactly two irreducible characters of degree one : χ_1 (trivial) and χ_2 (sign).

In fact any symmetric group has exactly two irreducible linear characters : the trivial and the sign. This is a consequence of the fact that A_n is the derived subgroup of S_n , hence any homomorphism from S_n into a commutative group factors through A_n . The quotient S_n/A_n is of order two hence the non-trivial element is sent either to 1 or -1. This gives exactly two linear characters.

Here is a generality on the **permutation character** of S_n .

Let $G = S_n$ be the symmetric group. It has a natural *n*-dimensional representation defined by

$$ge_i = e_{gi}$$

(the permutation representation). Let π be its character. For $g \in G$, define

$$fix(g) = \{i : 1 \le i \le n \text{ and } gi = i\}$$

Then

$$\pi(g) = |fix(g)|$$

Proposition 1.1. Let G be a subgroup of S_n , let $\mu: G \longrightarrow \mathbb{C}$ be the function defined by

$$\mu(g) = |fix(g)| - 1$$

Then μ is a character of G.

Proof. The permutation representation V always has an invariant subspace which is

$$U = Span(u_1 + u_2 + \dots + u_n)$$

By Mashke's theorem it has a complement W, a $\mathbb{C}[G]$ -submodule such that

$$V = U \oplus W$$

Let μ be the character of W, then

$$\pi = 1_G + \mu$$

where $1_G(g) = 1$ for all g. We then have

$$\mu(g) = |fix(g)| - 1$$

Going back to S_5 , we let χ_3 be the permutation character. Let us determine the values of χ_3 .

(1) |fix(1)| = 5 hence $\chi_3(1) = 4$

(2) |fix(1,2)| = 3 hence $\chi_3((1,2)) = 2$

(3) |fix(1,2,3)| = 2 hence $\chi_3((1,2,3)) = 1$

(4) |fix(1,2)(3,4)| = 1 hence $\chi_3((1,2)(3,4)) = 0$

(5) |fix(1,2,3,4)| = 1 hence $\chi_3((1,2,3,4)) = 0$

(6) |fix(1,2,3)(4,5)| = 0 hence $\chi_3((1,2,3)(4,5)) = -1$

(7) |fix(1,2,3,4,5)| = 0 hence $\chi_3((1,2,3,4,5)) = -1$

The values of χ_3 are as follows 4, 2, 1, 0, 0, -1, -1. We calculate

$$<\chi_3,\chi_3>=4^2/120+2^2/12+1^2/6+(-1)^2/6+(-1)^2/5=1$$

It follows that the character χ_3 is irreducible.

Now, $\chi_4 = \chi_3 \chi_2$ is also irreeducible. We already have 4 irreducible characters. Need three more... Consider $\chi_3^2 = \chi_S + \chi_A$. We have $\chi_S(g) = \frac{1}{2}(\chi_3(g)^2 + \chi_3(g^2))$

ANDREI YAFAEV

and

$$\chi_A(g) = \frac{1}{2}(\chi_3(g)^2 - \chi_3(g^2))$$

To calculate values of χ_S and χ_A , we calculate: $1^2 = 1$, $g_2^2 = 1$, $g_3^2 \sim g_3$, $g_4^2 = 1$, $g_5^2 \sim g_4$, $g_6^2 \sim g_3$, $g_7^2 \sim g_7$. We find $\chi_S : 10, 4, 1, 2, 0, 1, 0$ and $\chi_A : 6, 0, 0, -2, 0, 0, 1$. Call it χ_5 .

One calulates : $\langle \chi_A, \chi_A \rangle = 1$ hence χ_A is a new irreducible character.

Notice here that $\chi_2 \chi_A = \chi_A$ hence multiplying by χ_2 does not give a new character.

Now look at χ_S . We have $\langle \chi_S, \chi_S \rangle = 3$ hance χ_S is a sum of three irreducible characters.

Next :

$$<\chi_S, \chi_1>=10/120+4/12+1/6+2/8+1/6=1,$$

$$<\chi_S, \chi_3>=40/120+8/12+1/6-1/6=1,$$

$$<\chi_S,\chi_S>=100/120+16/12+1/6+4/8+1/6=3$$

Write $\chi_S = \sum \lambda_i \chi_i$, we have $\sum \lambda_i^2 = 3$ hence exactly three λ_i s are equal to 1 and we already have $\lambda_1 = \lambda_3 = 1$.

Therefore

$$\chi_S = \chi_1 + \chi_3 + \psi$$

where ψ is some irreducible character.

We have

$$\chi_S(1) = \chi_1(1) + \chi_3(1) + \psi(1) = \frac{1}{2}(\chi_3(1)^2 + \chi_3(1)) = \frac{1}{2}(16+4) = 10$$

As $\chi_1(1) = 1$ and $\chi_3(1) = 4$, we find that $\psi(1) = 5$. Hence ψ is a new irreducible character, we let $\chi_6 = \psi$. Using

$$\chi_6(g) = \chi$$

We find

 $\chi_6: 5, 1, -1, 1, -1, 1, 0$

Finally, $\chi_7 = \chi_6 \chi_2$ is the last character. We get the complete character table for S_5 :

g_i	$g_1 = 1$	g_2	g_3	g_4	g_5	g_6	g_7
χ_1	1						
χ_2	1	-1	1	1	-1	-1	1
χ_3	4	2	1	0	0	-1	-1
χ_4	4	-2	1	0	0	1	-1
χ_5	6	0	0	-2	0	0	1
χ_6	5	1	-1	1	-1	1	0
χ_7	5	-1	-1	1	1	-1	0

Notice that all entries are integers !

2. Character table of S_6 .

The group S_6 is of order 720. It has 11 conjugugacy classes. We denote them by their shape :

$$g_1 = 1, g_2 = (2), g_3 = (3), g_4 = (2, 2), g_5 = (4), g_6 = (3, 2), g_7 = (5)$$

 $g_8 = (2, 2, 2), g_9 = (3, 3), g_{10} = (4, 2), g_{11} = (6)$

The sizes of centralisers are 720, 48, 18, 16, 8, 6, 5, 48, 18, 8, 6.

As before we have two linear characters χ_1 and χ_2 .

Next, as before, consider the permutation character : $\chi_3(g) = |fix(g)| - 1$, the values of χ_3 are 5, 3, 2, 1, 1, 0, 0, -1, -1, -1, -1 and one calculates

$$<\chi_3,\chi_3>=1$$

We get another irreducible character by setting $\chi_4 = \chi_2 \chi_3$. Next, as before we consider

$$\chi_3^2 = \chi_S + \chi_A$$

We have

g_i	$g_1 = 1$	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}
χ_3	5	3	2	1	1	0	0	-1	-1	-1	-1
χ_S	15	$\overline{7}$	3	3	1	1	0	3	0	1	0
χ_A	10	2	1	-2	0	-1	0	-2	1	0	1

One finds that $\langle \chi_A, \chi_A \rangle = 1$. We let $\chi_5 = \chi_A$, this is the new irreducible character.

In this case (unlike in the case of S_5), $\chi_2\chi_5 = \chi_6$ is a new irreducible character.

Finally, we calculate:

$$<\chi_S,\chi_S>=3,<\chi_S,\chi_1>=1,<\chi_S,\chi_3>=1$$

ANDREI YAFAEV

hence, as before there is an irreducible character ψ such that

$$\chi_S = \chi_1 + \chi_3 + \psi$$

This gives χ_7 of degree 9 and $\chi_8 = \chi_2 \chi_7$ is another irreducible character. The table so far is as follows:

g_i	$g_1 = 1$	g_2	g_3	g_4	g_5	g_6	g_7	g_8	g_9	g_{10}	g_{11}
χ_1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	1	1	-1	-1	1	-1	1	1	-1
χ_3	5	3	2	1	1	0	0	-1	-1	-1	-1
χ_4	5	-3	2	1	-1	0	0	1	-1	-1	1
χ_5	10	2	1	-2	0	-1	0	-2	1	0	1
χ_6	10	-2	1	-2	0	-1	0	2	1	0	-1
χ_7	9	3	0	1	-1	0	-1	3	0	1	0
χ_8	9	-3	0	1	1	0	-1	-3	0	1	0

We will recover the three remining characters from orthogonality relations.

Let s be the permutation (1, 2) and t the permutation (1, 2)(3, 4), these are elements of order two. It is a general fact that if g has order two, then $\chi(g)$ is an integer. Indeed, $\chi(g)$ is a sum of square roots of one, they are ± 1 .

Let χ_9 , $\chi_1 0$ and χ_{11} be the three remaining characters. Column orthogonality gives:

$$\sum_{i=1}^{11} \chi_i(s) = 48 = |C_G(s)|$$

Hence

$$\chi_9(s)^2 + \chi_1 0(s)^2 + \chi_{11}(s)^2 = 2$$

By reodering the characters, we assume that

$$\chi_9(s)^2 = \chi_1 0(s)^2 = 1$$
 and $\chi_{11}(s)^2 = 0$

Now, the character $\chi_2\chi_9$ is an irreducible character not equal to any of the χ_1, \ldots, χ_8 (because they come in pairs !)

By definition of χ_2 , we have

$$\chi_2\chi_9(s) = \chi_2(s)\chi_9(s) = -\chi_9(s)$$

As $\chi_9(s) = \pm 1$, we see that $\chi_2 \chi_9 \neq \chi 9$ and can not be equal to χ_{11} $(\chi_{11}(s) = 0)$ hence

$$\chi_2\chi_9=\chi_{10}$$

After, if necessary, renumbering the characters, we have

$$\chi_9(s) = 1, \chi_{10}(s) = -1$$

We have completely determined the values of χ_i s at s. Now we have the table

Write orthogonality relations:

$$\sum \chi_i(1)\chi_i(s) = 0 \qquad \sum \chi_i(s)\chi_i(t) = 0$$
$$\sum \chi_i(t)\chi_i(t) = 16 \qquad \sum \chi_i(1)\chi_i(t) = 0$$

This gives

$$a-b=0$$
 $d-e=0$
 $d^{2}+e^{2}+f^{2}=2$ $ad+be+cf=10$

and it is easy to see that the only solutions in integers are

 $d = e = 1 \quad f = 0 \quad a = b = 5$

Finally, using $\sum_i \chi_i(1)^2 = 720$ gives c = 16. The rest of the table is determined by column orthogonality...

3. Restriction and induction.

Let H be a subgroup of G. Then $\mathbb{C}[H] \subset \mathbb{C}[G]$ and any $\mathbb{C}[G]$ -module V can be viewed as a $\mathbb{C}[H]$ -module. This is called the restriction from G to H and we denote this module

 $V\downarrow H$

Let χ be the character of V. The character of $V \downarrow H$ is obtained from χ by evaluating it on elements of H only, we denote it $\chi \downarrow H$. We call it the restriction of χ to H. Viewing χ as a function from G to \mathbb{C} , $\chi \downarrow H$ is simply the restriction of this function to H.

The inner product of characters of G, \langle , \rangle_G yields, by restriction the inner product \langle , \rangle_H of characters of H. If χ is a character of Gand ψ_i are irreducible characters of H, we have

$$\chi \downarrow H = d_1 \psi_i + \dots + d_r \psi_r$$

and we have

$$d_i = <\chi \downarrow H, \psi_i >_H$$

They satisfy the following

Proposition 3.1. Let χ be an irreducible character of G and ψ_1, \ldots, ψ_r irreducible characters of H. Then

$$\chi \downarrow H = d_1\psi_1 + \dots + d_r\psi_r$$

where the d_i satisfy

$$\sum d_i^2 \le |G:H|$$

with equality if and only if $\chi(g) = 0$ for all $g \in G \setminus H$.

Proof. We have

$$\sum d_i^2 = <\chi \downarrow H, \chi \downarrow H >_H = \frac{1}{|H|} \sum_{h \in H} \chi(h) \overline{\chi(h)}$$

As χ is an irreducible character, we have

$$1 = <\chi, \chi >_G = \frac{1}{|G|} \sum_{h \in H} \chi(h) \overline{\chi(h)} + K = \frac{|H|}{|G|} \sum d_i^2 + K$$

with $K = \frac{1}{|G|} \sum_{g \notin H} \chi(g) \overline{\chi(g)}$. Of course $K \ge 0$ and K = 0 if and only if $\chi(g) = 0$ for all $g \notin H$.

We have the following:

Proposition 3.2. Let H be a subgroup of G and ψ a non-zero character of H. There exists an irreducible character χ of G such that

$$<\chi \downarrow H, \psi > \neq 0$$

Proof. Let χ_i be irreducible characters of G and let χ_{reg} be the regular character. We have

$$\chi_{reg} = \sum_{i=1}^{\prime} \chi_i(1)\chi_i$$

Now

$$0 \neq \frac{|G|}{|H|}\psi(1) = \langle \chi_{reg} \downarrow H, \psi \rangle_H = \sum \chi_i(1) \langle \chi_i \downarrow H, \psi \rangle_H$$

(the first equality here comes from the fact that $\chi_{reg}(1) = |G|$ and zero otherwise).

It follows that some $\langle \chi_i \downarrow H, \psi \rangle \neq 0$.

We can obtain more information when H is a normal subgroup of G.

Theorem 3.3 (Clifford's theorem). Suppose H is a normal subgroup of G and let χ be an irreducible character of G. Write

$$\chi \downarrow H = d_1\psi_1 + \dots + d_r\psi_r$$

Then

(1) The $\psi_i s$ all have the same degree.

(2)

$$\chi \downarrow H = e(\psi_1 + \dots + \psi_m)$$

Proof. Let V be a $\mathbb{C}[G]$ -module with character χ (necessarily irreducible) and U an irreducible $\mathbb{C}[H]$ -submodule of $V \downarrow H$. For $g \in G$, let

$$gU = \{gv : v \in U\}$$

As H is a normal subgroup of $G(gHg^{-1} = H)$, gU is a $\mathbb{C}[H]$ -submodule of $V \downarrow H$. If W is a $\mathbb{C}[H]$ -submodule of gU, then $g^{-1}W$ is a $\mathbb{C}[H]$ submodule of V. Now, U is irreducible, hence $W = \{0\}$ or W = gU. It follows that gU is an irreducible submodule of $V \downarrow H$.

Of course all gU have the same dimension. We have a direct sum decomposition:

$$V \downarrow H = \bigoplus_{g \in G} gU$$

(the sum is direct because modules are simple) and ψ_i s are characters of some of the gUs which all have the same dimension (equal to d_i). This proves the first claim.

For the second, let

$$e = <\chi \downarrow H, \psi_1 >$$

and let X_1 be the submodule of $V \downarrow H$ whose character is $e\psi_1$. Then

$$X_1 = U_1 \oplus \dots \oplus U_e$$

where each U_e has character ψ_1 .

Now, for any g in G, gX_1 is a direct sum of isomorphic $\mathbb{C}[H]$ -modules gU_i

We just need an argument to show that they are isomorphic. We have $U_i \cong U_j$ and we need to show that $gU_i \cong gU_j$. If $\phi: U_i \longrightarrow U_j$ is an isomorphism of $\mathbb{C}[H]$ -modules, then $\theta: gU_i \longrightarrow gU_j$ defined by $\theta(gu) = g\phi(u)$. Verifications that this is a $\mathbb{C}[H]$ morphism (using the fact that H is normal) are left to the reader.

The module $V \downarrow H$ is a sum of the gX_1 . We write

$$V \downarrow H = X_1 \oplus \dots \oplus X_m$$

where X_i s are gX_1 for some $g \in G$ and pairwise non-isomorphic.

It follows that

$$\chi \downarrow H = e(\psi_1 + \dots + \psi_m)$$

Suppose now that the index of H in G is two. We will typically be interested in $A_n \subset S_n$. Then for any irreducible character χ of G, either $\chi \downarrow H$ is irreducible or $\chi \downarrow H$ is a sum of two irreducible characters of the same degree. To see this, write

$$\chi \downarrow H = d_1\psi_1 + \dots + d_r\psi_r$$

where $\sum_{i} d_i^2 \leq 2$. Hence d_i s are either 1, 1 or 1.

As we have $G/H \cong C_2$, we can define a character λ of G by

 $\lambda(g) = 1$ if $g \in H$

and

$$\lambda(g) = -1$$
 if $g \notin H$

In the case $G = S_n$ and $H = A_n$, this is simply the sign.

Now, for irreducible characters χ of G, χ and $\lambda \chi$ are irreducible of the same degree. We have

Proposition 3.4. The following are equivalent

- (1) $\chi \downarrow H$ is irreducible
- (2) $\chi(g) \neq 0$ for some $g \in G$ with $g \notin H$
- (3) The characters χ and $\lambda \chi$ are not equal.

We have seen that $\sum d_i < 2$ (strict inequality) if and only if $\chi(g) \neq 0$ for some $g \in G$ and $g \notin H$. The inequality is strict precisely when $\sum d_i^2 < 2$.

Also $\lambda \chi(g) = \chi(g)$ if $g \in H$ and $-\chi(g)$ is $g \notin H$. So $\chi(g) \neq 0$ for $g \notin H$ if and only if $\lambda \chi \neq \chi$.

Proposition 3.5. Suppose that H is a normal subgroup of index 2 in G and that |chi is an irreducible character of G such that $\chi \downarrow H$ is irreducible.

If ϕ is an irreducible character of G which satisfies

$$\phi \downarrow H = \chi \downarrow H$$

then either $\phi = \chi$ or $\phi = \chi \lambda$.

Proof. We have

$$(\chi + \lambda \chi) = 2\chi(g)$$
 if $g \in H$ and 0 otherwise

Therefore

$$<\chi+\lambda\chi,\phi>=\frac{1}{|G|}\sum_{g\in H}2\chi(g)\overline{\phi(g)}=\frac{1}{H}\sum_{g\in H}\chi(g)\overline{\phi(g)}$$

But $\langle \chi \downarrow H, \phi \downarrow H \rangle = 1$ and $\phi \downarrow H = \chi \downarrow H$ hence $\langle \chi + \lambda \chi, \phi \rangle = 1$ which implies that either $\phi = \chi$ or $\phi = \lambda \chi$.

Finaly we analyse the case where the character $\chi \downarrow H$ is reducible.

Proposition 3.6. Suppose that H is a normal subgroup of index two of G and χ an irreducible character of G for which $\chi \downarrow H$ is the sum of two irreducible characters $\chi \downarrow H = \psi_1 + \psi_2$. If ϕ is a character such that $\phi \downarrow H$ has ψ_1 or ψ_2 in its decomposition, then $\phi = \chi$.

Proof. We have $\chi(g) = 0$ for $g \notin H$, therefore

$$<\phi,\chi>_G=rac{1}{2}<\phi\downarrow H,\chi\downarrow H>_H$$

if $\phi \downarrow H$ has ψ_1 or ψ_2 as constituent, then $\langle \phi \downarrow H, \chi \downarrow H \rangle_H \neq 0$ hence $\langle \phi, \chi \rangle_G \neq 0$ in which case it must be one. Therefore $\phi = \chi$ (χ is irreducible !).

To summarise:

Suppose G is a finite group and H a subgroup of index 2.

(1) Each irreducible character χ of G non-zero somewhere outside of H restricts to an irreducible character of H.

These characters come in pairs χ and $\lambda \chi$, they restrict to the same character on H.

(2) If χ irreducible on G is zero everywhere outside H, then χ restricts to the sum of two distinct irreducible characters of same degree.

These two characters come from no other irreducible character of G.

(3) Every irreducible character appears among those obtained by restricting irreducible characters of G.

Let ψ be an irreducible character of H. There exists χ irreducible of G such that $\langle \chi \downarrow H, \psi \rangle \neq 0$. Now, either $\chi \downarrow H$ is irreducible in which case $\chi \downarrow H = \psi$ (necessarily $\langle \chi \downarrow H, \psi \rangle = 1$) or $\chi \downarrow H = \psi_1 + \psi_2$ in which case we see that ψ is ψ_1 or ψ_2 .

Let us apply what preceded to A_5 .

The group $H = A_5$ is of order 60 and is a normal subgroup of index 2 in S_5 . It has 5 conjugacy classes $g_1 = 1$, $g_2 = (123)$, $g_3 = (1, 2)(3, 4)$, $g_4 = (12345)$ and $g_5 = (13452)$ and centraliserz have sizes 60, 3, 4, 5 and 5.

Look at our 7 characters χ_1, \ldots, χ_7 of S_5 and the table we constructed previously. We see that χ_1, χ_3 and χ_6 are nonzero somewhere outside of A_4 . Therefore $\chi_1 \downarrow H = \psi_1, \chi_3 \downarrow H = \psi_3$ and $\chi_6 \downarrow H = \psi_6$ give three irreducible characters of H.

Notice that $\chi_5(g) = 0$ for $g \notin H$. Hence $\chi_5 \downarrow H = \psi_4 + \psi_5$ where ψ_4 and ψ_5 are distinct irreducible characters of H and they are of degree three (they have the same degree and $\psi_4(1) + \psi_5(1) = \chi_5(1) = 6$).

Because χ_2 and χ_1 restrict to the same character; χ_4, χ_3 restrict to the same character and χ_7, χ_6 restrict to the same character, we see that ψ_1, \ldots, ψ_5 are distinct irreducible characters of A_5 and **this is a complete list**.

We have the table:

g_i	$g_1 = 1$	g_2	g_3	g_4	g_5
ψ_1	1	1	1	1	1
ψ_2	4	1	0	-1	-1
ψ_3	5	-1	1	0	0
ψ_4	3	α_2	α_3	α_4	α_5
ψ_5	3	β_2	β_3	β_4	β_5

We will recover α_i s and β_i s by column orthogonality. Because $\chi_5 \downarrow H = \psi_4 + \psi_5$, we have

$$\alpha_2 + \alpha_2 = 0, \quad \alpha_3 + \alpha_3 = -2, \quad \alpha_4 + \beta_4 = \alpha_5 + \beta_5 = 1$$

By column orthogonality, we get

$$3 = 3 + \alpha_1^2 + \alpha_2^2$$

$$4 = 2 + \alpha_3^2 + \beta_3^2$$

$$5 = 2 + \alpha_4^2 + \beta_4^2 = 2 + \alpha_5^2 + \beta_5^2$$

This immediately gives $\alpha_2 = \beta_2 = 0$ and $\alpha_3 = \beta_3 = -1$. Next, α_4 and β_4 are roots of the quadratic equation

$$x^2 - x - 1 = 0$$

This gives

$$\alpha_4 = \frac{1 + \sqrt{5}}{2}, \quad \beta_4 = \frac{1 - \sqrt{5}}{2}$$

Similarly (and because $\psi_4 \neq \psi_5$),

$$\alpha_5 = \frac{1+\sqrt{5}}{2}, \quad \beta_5 = \frac{1-\sqrt{5}}{2}$$

This gives a complete table for A_5 . Notice, that unlike in the case of S_5 , the values of characters are not integers, in fact they are not even rational.

4. INDUCTION AND FROBENIUS RECIPROCITY.

Let H be a subgroup of a finite group G.

Let U be a $\mathbb{C}[H]$ -submodule of $\mathbb{C}[H] \subset \mathbb{C}[G]$. We let $U \uparrow G$ the $\mathbb{C}[G]$ -submodule $\mathbb{C}[G]U$ of $\mathbb{C}[G]$

This $U \uparrow G$ is a $\mathbb{C}[G]$ -submodule of $\mathbb{C}[G]$ called the $\mathbb{C}[G]$ -submodule induced from U.

The following properties are left without proofs.

- **Proposition 4.1.** (1) If U and V are $\mathbb{C}[H]$ -submodules of $\mathbb{C}[H]$ and U is $\mathbb{C}[H]$ -isomorphic to V. Then $U \uparrow G$ is $\mathbb{C}[G]$ -isomorphic to $V \uparrow G$.
 - (2) (this is the corrolary of the above) Let U be a $\mathbb{C}[H]$ -submodule of $\mathbb{C}[H]$. Suppose that

$$U = U_1 \oplus \cdots \oplus U_m$$

where U_is are $\mathbb{C}[H]$ -submodules. Then

$$U \uparrow G = U_1 \uparrow G \oplus \cdots \oplus U_m \uparrow G$$

The second property allows to define the induced module for **any** $\mathbb{C}[H]$ -module (it is always a direct sum of submodules of $\mathbb{C}[H]$).

On acan define the induced representation by choosing the set of representatives for the coset space G/H, then form the direct sum

$$\oplus_{e \in G/H} eV$$

with a natural action of G.

If V is a $\mathbb{C}[H]$ module, then

$$\dim(V \uparrow G) = [G : H] \dim(V)$$

It is easy to see the following (which shows that the induction is transitive):

Theorem 4.2. Suppose H and K are subgroups of G such that $H \subset K \subset G$. If U is a $\mathbb{C}[H]$ -module, then

$$(U \uparrow K) \uparrow G \cong U \uparrow G$$

A few examples of induced representations.

(1) Let 1_H be the trivial representation of H. Then $1_H \uparrow G$ is the premutation representation on G/H (the set of cosets.) That means, $1_H \uparrow G$ acts as $xH \mapsto gxH$.

For example the representation induced on S_n by the trivial representation of A_n is the 2-dimensional representation ρ as follows : Choose basis $\{e_{-1}, e_1\}$, then e_i is sent to $e_{\epsilon(\sigma)}$.

We see that $e_1 + e_{-1}$ is a stable subspace, so is $e_1 - e_{-1}$. Hence ρ is the sum of two one dimensional representations : the trivial one and the non-trivial one.

The induces representation induced by the trivial representation of the trivial subgroup

(2) The induced representation of the regular representation of H is the regular representation of G.

Another example of induced representation.

Take $G = S_3$. This is generated by (1, 2, 3) and $\sigma = (1, 2)$. Let H be the subgroup generated by (1, 2, 3); it is cyclic of order three. Consider the usual representation $\rho_H: (1, 2, 3) \mapsto \zeta_3$ on the one-dimensional vector space V. We know already that $\rho_H \uparrow G$ will be two dimensional.

We have

$$V \uparrow G = V \oplus \sigma V$$

Let v_1 be the basis of V and $v_2 = (1, 2)v_1$. Then 1 acts as the identity (this is always the case).

$$(1,2)v_1 = v_2, \quad (1,2)v_2 = v_1$$

Hence (1,2) is represented by the matrix

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

We have $(1, 2, 3)v_1 = \zeta_3 v_1$. Now, notice that $(1, 2, 3)(1, 2) = (1, 2)(1, 2, 3)^2 (= (1, 3))$. This gives

$$(1,2,3)v_2 = (1,2,3)(1,2)v_1 = (1,2)(1,2,3)^2v_1 = \zeta_3^2(1,2)v_1 = \zeta_3^2v_2$$

this gives

$$(1,2,3) \mapsto \begin{pmatrix} \zeta_3 & 0\\ 0 & \zeta_3^2 \end{pmatrix}$$

That completely determines the induced representation.

If ψ is a character of H, let U be an $\mathbb{C}[H]$ -module of which ψ is a character. The character $\psi \uparrow G$ of $U \uparrow G$ is called the induced character (from ψ).

Our aim is to prove the following theorem:

Theorem 4.3 (Frobenius reciprocity theorem). Let H be a subgroup of G. Let χ be a character of G and let ψ be a character of H. Then

 $\langle \psi \uparrow G, \chi \rangle_G = \langle \psi, \chi \downarrow H \rangle_H$

We will use a lemma:

Lemma 4.4. Let V and W be $\mathbb{C}[G]$ -modules with characters χ and ψ respectively. Then

$$\dim(Hom_{\mathbb{C}[G]}(V,W)) = <\chi,\psi>$$

Proof. Write

 $V = V_1^{c_1} \oplus \dots \oplus V_m^{c_m}$

where V_i s are simple submodules of $\mathbb{C}[G]$. Similarly

$$W = V_1^{d_1} \oplus \cdots \oplus V_k^{d_m}$$

By Shur's lemma

$$\dim(\operatorname{Hom}_{\mathbb{C}[G]}(V_i, V_j)) = \delta_{i,j}$$

It follows that

$$\dim(\operatorname{Hom}_{\mathbb{C}[G]}(V,W)) = \sum_{i=1}^{k} c_i d_i$$

But on the other hand:

$$\chi = \sum c_i \chi_i$$
 and $\psi = \sum d_i \chi_i$

(where χ_i s are all characters of G). It follows that

$$\langle \chi, \psi \rangle = \sum c_i d_i$$

Another lemma.

Lemma 4.5. Let U be a $\mathbb{C}[H]$ -submodule of $\mathbb{C}[H]$ and V a $\mathbb{C}[G]$ -submodule of $\mathbb{C}[G]$. Then

$$\dim Hom_{\mathbb{C}[G]}(U \uparrow G, V) = \dim Hom_{\mathbb{C}[H]}(U, V \downarrow H)$$

Proof. Let $\phi \in \operatorname{Hom}_{\mathbb{C}[G]}(U \uparrow G, V)$ and let $\overline{\phi} \in \operatorname{Hom}_{\mathbb{C}[H]}(U, V \downarrow H)$ be the restriction of ϕ to U. The map

 $\phi \mapsto \overline{\phi}$

is obviously \mathbb{C} -linear. We will show that this is an isomorphism. We are going to use the following lemma:

Lemma 4.6. Let G be a finite group and H a subgroup. Let U be a $\mathbb{C}[H]$ -submodule of $\mathbb{C}[H]$. Let θ be a $\mathbb{C}[H]$ -homomorphism from U to $\mathbb{C}[G]$. Then there exists an r in $\mathbb{C}[G]$

$$\theta \colon u \mapsto ur$$

Proof. Let θ be a homomorphism $U \longrightarrow \mathbb{C}[G]$. Let W be a $\mathbb{C}[H]$ module such that $\mathbb{C}[G] = U \oplus W$. Define $\alpha \colon \mathbb{C}[G] \longrightarrow \mathbb{C}[G]$ by $\alpha(u + w) = \theta(u)$.

Then α is an endomorphism of $\mathbb{C}[G]$, viewed as $\mathbb{C}[H]$ -module. Let $r = \alpha(1) \in \mathbb{C}[G]$. Then

$$\alpha(u) = \theta(u) = \alpha(1u) = \alpha(1)\alpha(u) = ru$$

because $u \in U \subset \mathbb{C}[H]$

First let us show the surjectivity.

Let $\phi \in \operatorname{Hom}_{\mathbb{C}[H]}(U, V \downarrow H)$. There exists $r \in \mathbb{C}[G]$ such that $\phi(u) = ur$. Define $\theta \colon U \uparrow G \longrightarrow \mathbb{C}[G]$ by

$$\theta(s) = sr$$

Then $\theta \in \operatorname{Hom}_{\mathbb{C}[G]}(U \uparrow G, V)$ and $\overline{\theta} = \phi$. This proves the surjectivity.

Now, suppose $ur_1 = ur_2$ for all $u \in U$, then $gur_1 = gur_2$ for all $g \in G, u \in U$, hence $sr_1 = sr_2$ for all $s \in U \uparrow G$. It follows that $\theta \longrightarrow \overline{\theta}$ is injective.

This finishes the proof.

Now, to derive the Frobenius reciprocity, we just write

$$\chi = \sum d_i \chi_i$$
 and $\psi = \sum e_j \psi_j$

Then

$$\langle \psi \uparrow G, \chi \rangle_G = \sum_{i,j} e_j d_i \langle \psi_j \uparrow G, \chi_i \rangle_G = \sum_{i,j} e_j d_i \langle \psi_j, \chi_i \downarrow H \rangle_H = \langle \psi, \chi \downarrow H \rangle_H$$

This finishes the proof of Frobenius reciprocity.

Let us illustrate this with the example $G = S_3$.

We have three conjugacy classes and the character table is as follows:

and the subgroup $H = \langle a = (123) \rangle$ and let χ the character of $(123) \mapsto \zeta$. The conjugacy classes of H are of course $1, a, a^2$ and the values taken by χ are $1, \zeta, \zeta^2$. Let ψ_1, ψ_2, ψ_3 be the three irreducible characters of H. Here $\chi = \psi_2$.

We know that $\chi \uparrow G = \chi_3$. Its values are 2, 0, -1.

Notice that because χ_3 is irreducible, $\langle \chi_3, \chi_2 \rangle = \chi_3, \chi_1 \rangle = 0$

The values taken by $\chi_3 \downarrow H$ are 2, -1, -1. Notice that this is $\chi_3 \downarrow H = \psi_2 + \psi_3$.

We have

Let us calculate

$$\langle \chi \uparrow G, \chi_3 \rangle = \langle \chi_3, \chi_3 \rangle = 1$$

Now,

$$<\chi,\chi_3\downarrow H>=<\psi_2,\psi_2+\psi_3>=1+0=1$$

They agree as predicted by Frobenius reciprocity.

4.1. Values of induced characters. There is a simple way to evaluate the values of induced characters. Let ψ be a character of H and define the function $\psi: G \longrightarrow \mathbb{C}$ by $\psi(g)$ if $g \in H$ and 0 otherwise (we extends ϕ by zero.)

Proposition 4.7. The values of $\psi \uparrow G$ are given by

$$(\psi \uparrow G)(g) = \frac{1}{|H|} \sum_{y \in G} \psi(y^{-1}gy)$$

for $g \in G$.

Proof. Define $f(g) = \frac{1}{|H|} \sum_{y \in G} \psi(y^{-1}gy)$. We wish to prove that $f = \psi \uparrow G$. It is trivial to check that $f(w^{-1}gw) = f(g)$ hence f is a class function. Remember that irreducible characters form a basis of the vector space of class functions. To show that $f = \psi$, is suffices to check that

$$\langle f, \chi \rangle_G = \langle \psi \uparrow G, \chi \rangle_G$$

for all irreducible characters of G. Let χ be an irreducible character.

$$\langle f, \chi \rangle_G = \frac{1}{|G|} \sum_{g \in G} f(g) \overline{\chi(g)} = \frac{1}{|G||H|} \sum_{g,y \in G} \psi(y^{-1}gy) \overline{\chi(g)}$$

Let $x = y^{-1}gy$. Then

$$< f, \chi >_G = \frac{1}{|G||H|} \sum_{x,y \in G} \psi(x) \overline{\chi(yxy^{-1})}$$

Now, $\psi(x) = 0$ if $x \notin H$ and $\chi(yxy^{-1}) = \chi(x)$ for all $y \in G$. Therefore

$$\langle f, \chi \rangle_G = \frac{1}{|H|} \sum_{x \in H} \psi(x) \overline{\chi(x)} \langle \psi, \chi \downarrow H \rangle_H$$

Now, by Frobenius reciprocity, $\langle f, \chi \rangle_G = \langle \psi \uparrow G, \chi \rangle_G$ which shows exactly that $f = \psi \uparrow G$.

Corollary 4.8.

$$(\psi \uparrow G)(1) = \frac{|G|}{|H|}\psi(1)$$

This is immediate.

Let $x \in G$ Define a class function f_x^G on G by $f_x^G(y) = 1$ if $y \in x^G$ and 0 otherwise. (this is simply the characteristic function of the conjugacy class x^G).

Proposition 4.9. Let χ be a character of G and $x \in G$. Then

$$\langle \chi, f_x^G \rangle_G = \frac{\chi(x)}{|C_G(x)|}$$

Proof. This is an easy calculation.

$$<\chi, f_x^G >_G = \frac{1}{|G|} \sum_{g \in G} \chi(g) f_x^G(g) = \frac{1}{|G|} \sum_{g \in x^G} \chi(g)$$

 $= \frac{|x^G|}{|G|} \chi(x) = \frac{\chi(x)}{|C_G(x)|}$

Proposition 4.10. Let ψ be a character of $H \subset G$ and $x \in G$.

- (1) if no element of x^G lies in H, then $(\psi \uparrow G)(x) = 0$ (2) if some element of x^G lies in H, then

$$(\psi \uparrow G)(x) = |C_G(x)| (\frac{\psi(x_1)}{|C_G(x_1)|} + \dots + \frac{\psi(x_m)}{|C_G(x_m)|})$$

here $x_1 = x_1 \in H$ and $f^G + H = f^H + \dots + f^H$

where $x_1, \ldots, x_m \in H$ and $f_x^G \downarrow H = f_{x_1}^H + \cdots + f_{x_m}^H$.

Proof. We have

$$\frac{(\psi \uparrow G)(x)}{|C_G(x)|} = \langle \psi \uparrow G, f_x^G \rangle_G = \langle \psi, f_x^G \downarrow H \rangle_H$$

If no element of x^G lies in H, then $f_x^G \downarrow H = 0$ and hence $(\psi \uparrow G)(x) =$ 0

Otherwise

$$\frac{(\psi \uparrow G)(x)}{|C_G(x)|} = \langle \psi, f_{x_1}^H + \dots + f_{x_m}^H \rangle_H = |C_G(x)| (\frac{\psi(x_1)}{|C_G(x_1)|} + \dots + \frac{\psi(x_m)}{|C_G(x_m)|})$$