TENSOR PRODUCTS, RESTRICTION AND INDUCTION.

ANDREI YAFAEV

Our first aim in this chapter is to give meaning to the notion of product of characters.

Let V and W be two finite dimensional vector spaces over \mathbb{C} with bases v_{1}, \ldots, v_{m} and w_{1}, \ldots, w_{n} repectively. Define a symbol $v_{i} \otimes w_{j}$. The tensor product space $V \otimes W$ is the $m n$-vector spacewith basis

$$
\left\{v_{i} \otimes w_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}
$$

The symbol $v_{i} \otimes w_{j}$ is bilinear.
In general, let $v=\sum \lambda_{i} v_{i}$ and $w=\sum \mu_{j} w_{j}$, then

$$
v \otimes w=\sum_{i, j} \lambda_{i} \mu_{j}\left(v_{i} \otimes w_{j}\right)
$$

For example

$$
\left(2 v_{1}-v_{2}\right) \otimes\left(w_{1}+w_{2}\right)=2 v_{1} \otimes w_{1}+2 v_{1} \otimes w_{2}-v_{2} \otimes w_{2}-v_{2} \otimes w_{2}
$$

In other words, to calculate with tensor products, just use the bilinearity. Caution Not every tensor can be expressed as $v \otimes w$, indeed $v_{1} \otimes w_{1}+v_{2} \otimes w_{2}$ can not be expressed in this form.

Proposition 0.1. Let e_{1}, \ldots, e_{m} be a basis of V and f_{1}, \ldots, f_{n} a basis of W. Then

$$
\left\{e_{i} \otimes f_{j}\right\}
$$

is a basis of $V \otimes W$.
Proof. It is obvious that these elements generate $V \otimes W$ (by bilinearity) and there are $m n$ of them, hence it is a basis.

Suppose now that V and W are $\mathbb{C}[G]$-modules. One defines the structure of $\mathbb{C}[G]$-module on $V \otimes W$ by

$$
g\left(v_{i} \otimes w_{j}\right)=\left(g v_{i}\right) \otimes\left(g w_{j}\right)
$$

By bilinearity we obtain

$$
g(v \otimes w)=(g v) \otimes(g w)
$$

It is obvious that this gives $V \otimes W$ a structure of $\mathbb{C}[G]$-module.

Proposition 0.2. Let V and W be $\mathbb{C}[G]$-modules with characters χ and ψ. The character ϕ of $V \otimes W$, is the product $\chi \psi$:

$$
\chi \psi(g)=\chi(g) \psi(g)
$$

Proof. Let $g \in G$. We can diagonalise its action on V and W. Hence there exist bases $\left\{e_{i}\right\}$ of V and $\left\{f_{i}\right\}$ of W such that

$$
g e_{i}=\lambda_{i} e_{i} \text { and } g f_{j}=\mu_{j} f_{j}
$$

Then

$$
\chi(g)=\sum \lambda_{i} \text { and } \psi(g)=\sum \mu_{j}
$$

We obtain

$$
g\left(e_{i} \otimes f_{j}\right)=\left(g e_{i}\right) \otimes\left(g f_{j}\right)=\lambda_{i} \mu_{j}\left(e_{i} \otimes f_{j}\right)
$$

As $\left\{e_{i} \otimes f_{j}\right\}$ forms a basis of $V \otimes W$, we obtain

$$
\phi(g)=\sum_{i, j} \lambda_{i} \mu_{j}=\chi(g) \psi(g)
$$

This gives meaning to the product of two characters, indeed the consequence of this proposition is :

Corollary 0.3. The product of two characters is a character.
Take the character table of S_{4}.

g_{i}	1	(12)	(123)	$(12)(34)$	(1234)
χ_{1}	1	1	1	1	1
χ_{2}	1	-1	1	1	-1
χ_{3}	2	0	-1	2	0
χ_{4}	3	1	0	-1	-1
χ_{5}	3	-1	0	-1	1
$\chi_{3} \chi_{4}$	6	0	0	-2	0
χ_{4}^{2}	9	1	0	1	1

We see that

$$
\chi_{3} \chi_{4}=\chi_{4}+\chi_{5} ; \quad \chi_{4}^{2}=\chi_{1}+\chi_{3}+\chi_{4}+\chi_{5}
$$

We show the following:
Proposition 0.4. Let χ be a character of G and let λ be a linear character (recall that it means that the degree of λ is one). Suppose χ is irreducible, then $\lambda \chi$ is irreducible.

Proof. For any $g, \operatorname{lambda}(g)$ is a root of unity, therefore $\lambda(g) \overline{\lambda(g)}=1$.
We calculate:

$$
<\lambda \chi, \lambda \chi>=\frac{1}{|G|} \sum_{g} \chi(g) \lambda(g) \overline{\chi(g) \lambda(g)}=<\chi, \chi>=1
$$

hence $\lambda \chi$ is irreducible.
We will now see how to decompose the character χ^{2} and apply it to character tables of symmetric groups.

Let V be a $\mathbb{C}[G]$-module with character χ, the module $V \otimes V$ has character χ^{2}. Define the linear transformation

$$
T\left(v_{i} \otimes v_{j}\right)=v_{j} \otimes v_{i}
$$

Then for all v, w, we have $T(v \otimes w)=w \otimes v$.
Let
$S(V \otimes V)=\{x \in V \otimes V: T(x)=x\}, \quad A(V \otimes V)=\{x \in V \otimes V: T(x)=-x\}$
called the symmetric and antisymmetric part of $V \otimes V$.
The spaces $S(V \otimes V)$ and $A(V \otimes V)$ are $\mathbb{C}[G]$-submodules and

$$
V \otimes V=S(V \otimes V) \oplus A(V \otimes V)
$$

It is obvious that T is a $\mathbb{C}[G]$-homomorphism and hence for $x \in S(V \otimes$ $V)$ and g in G,

$$
T(g x)=g T(x)=g x
$$

hence $g x \in S(V \otimes V)$. Similarly, $A(V \otimes V)$ is a $\mathbb{C}[G]$ submodule.
For the direct sum:
$x \in S(V \otimes V) \cap A(V \otimes V)$, then $x=T(x)=-x$ hence $x=0$.
And for any $x \in V \otimes V$, we have

$$
x=\frac{1}{2}(x+T(x))+\frac{1}{2}(x-T(x))
$$

As T^{2} is the identity, we see that $\frac{1}{2}(x+T(x)) \in S(V \otimes V)$ and $\frac{1}{2}(x-$ $T(x)) \in A(V \otimes V)$.

Note that the symmetric part contains all the tensors $v \otimes w+w \otimes v$ and antisymmetric part - all the tensors $v \otimes w-w \otimes v$. In fact $v_{i} \otimes v_{j}+v_{j} \otimes v_{i}$ $(i \leq j)$ form a basis of S and $v_{i} \otimes v_{j}-v_{j} \otimes v_{i}(i<j)$ form a basis of A. The dimenasion of S is $\frac{n(n+1)}{2}$ and that of A is $\frac{n(n-1)}{2}$.

Proposition 0.5. Write

$$
\chi^{2}=\chi_{S}+\chi_{A}
$$

then,

$$
\chi_{S}(g)=\frac{1}{2}\left(\chi(g)^{2}+\chi\left(g^{2}\right)\right) \text { and } \chi_{A}(g)=\frac{1}{2}\left(\chi(g)^{2}-\chi\left(g^{2}\right)\right)
$$

Proof. As usual, choose a basis e_{i} of V such that $g e_{i}=\lambda_{i} e_{i}$. Then

$$
g\left(e_{i} \otimes e_{j}-e_{j} \otimes e_{i}\right)=\lambda_{i} \lambda_{j}\left(e_{i} \otimes e_{j}-e_{j} \otimes e_{i}\right)
$$

It follows that

$$
\chi_{A}(g)=\sum_{i<j} \lambda_{i} \lambda_{j}
$$

Now, $g^{2} e_{i}=\lambda_{i}^{2} e_{i}$, therefore $\chi(g)=\sum \lambda_{i}$ and $\chi\left(g^{2}\right)=\lambda_{i}^{2}$. It follows that

$$
\chi(g)^{2}=(\chi(g))^{2}=\sum \lambda_{i}^{2}+2 \sum_{i<j} \lambda_{i} \lambda_{j}=\chi\left(g^{2}\right)+2 \chi_{A}(g)
$$

hence

$$
\chi_{A}(g)=\frac{1}{2}\left(\chi^{2}(g)-\chi\left(g^{2}\right)\right)
$$

and the equality for χ_{S} follows from $\chi^{2}(g)=\chi_{A}(g)+\chi_{S}(g)$.
Take the character table of S_{4} above, we get:

$$
\chi_{S}=\chi_{1}+\chi_{3}+\chi_{4} ; \quad \chi_{A}=\chi_{5}
$$

1. Character table of S_{5}.

The group S_{5} has 7 conjugacy classes, as follows

$$
\begin{array}{ccccccc}
g_{i} & g_{1}=1 & g_{2}=(12) & g_{3}=(123) & g_{4}=(12)(34) & g_{5}=(1234) & g_{6}=(123)(45) \\
\left|C_{G}\left(g_{i}\right)\right| & 120 & 12 & 6 & 8 & 4 & 6
\end{array}
$$

The group S_{5} has exactly two irreducible characters of degree one : χ_{1} (trivial) and χ_{2} (sign).

In fact any symmetric group has exactly two irreducible linear characters : the trivial and the sign. This is a consequence of the fact that A_{n} is the derived subgroup of S_{n}, hence any homomorphism from S_{n} into a commutative group factors through A_{n}. The quotient S_{n} / A_{n} is of order two hence the non-trivial element is sent either to 1 or -1 . This gives exactly two linear characters.

Here is a generality on the permutation character of S_{n}.
Let $G=S_{n}$ be the symmetric group. It has a natural n-dimensional representation defined by

$$
g e_{i}=e_{g i}
$$

(the permutation representation). Let π be its character.
For $g \in G$, define

$$
f i x(g)=\{i: 1 \leq i \leq n \text { and } g i=i\}
$$

Then

$$
\pi(g)=\mid \text { fix }(g) \mid
$$

Proposition 1.1. Let G be a subgroup of S_{n}, let $\mu: G \longrightarrow \mathbb{C}$ be the function defined by

$$
\mu(g)=\mid \text { fix }(g) \mid-1
$$

Then μ is a character of G.
Proof. The permutation representation V always has an invariant subspace which is

$$
U=\operatorname{Span}\left(u_{1}+u_{2}+\cdots+u_{n}\right)
$$

By Mashke's theorem it has a complement W, a $\mathbb{C}[G]$-submodule such that

$$
V=U \oplus W
$$

Let μ be the character of W, then

$$
\pi=1_{G}+\mu
$$

where $1_{G}(g)=1$ for all g. We then have

$$
\mu(g)=|f i x(g)|-1
$$

Going back to S_{5}, we let χ_{3} be the permutation character.
Let us determine the values of χ_{3}.
(1) \mid fix $(1) \mid=5$ hence $\chi_{3}(1)=4$
(2) \mid fix $(1,2) \mid=3$ hence $\chi_{3}((1,2))=2$
(3) \mid fix $(1,2,3) \mid=2$ hence $\chi_{3}((1,2,3))=1$
(4) \mid fix $(1,2)(3,4) \mid=1$ hence $\chi_{3}((1,2)(3,4))=0$
(5) \mid fix $(1,2,3,4) \mid=1$ hence $\chi_{3}((1,2,3,4))=0$
(6) \mid fix $(1,2,3)(4,5) \mid=0$ hence $\chi_{3}((1,2,3)(4,5))=-1$
(7) \mid fix $(1,2,3,4,5) \mid=0$ hence $\chi_{3}((1,2,3,4,5))=-1$

The values of χ_{3} are as follows $4,2,1,0,0,-1,-1$. We calculate

$$
<\chi_{3}, \chi_{3}>=4^{2} / 120+2^{2} / 12+1^{2} / 6+(-1)^{2} / 6+(-1)^{2} / 5=1
$$

It follows that the character χ_{3} is irreducible.
Now, $\chi_{4}=\chi_{3} \chi_{2}$ is also irreeducible.
We already have 4 irreducible characters.
Need three more...
Consider $\chi_{3}^{2}=\chi_{S}+\chi_{A}$.
We have

$$
\chi_{S}(g)=\frac{1}{2}\left(\chi_{3}(g)^{2}+\chi_{3}\left(g^{2}\right)\right)
$$

and

$$
\chi_{A}(g)=\frac{1}{2}\left(\chi_{3}(g)^{2}-\chi_{3}\left(g^{2}\right)\right)
$$

To calculate values of χ_{S} and χ_{A}, we calculate: $1^{2}=1, g_{2}^{2}=1$, $g_{3}^{2} \sim g_{3}, g_{4}^{2}=1, g_{5}^{2} \sim g_{4}, g_{6}^{2} \sim g_{3}, g_{7}^{2} \sim g_{7}$.

We find $\chi_{S}: 10,4,1,2,0,1,0$ and $\chi_{A}: 6,0,0,-2,0,0,1$. Call it χ_{5}.
One caclulates : $<\chi_{A}, \chi_{A}>=1$ hence χ_{A} is a new irreducible character.

Notice here that $\chi_{2} \chi_{A}=\chi_{A}$ hence multiplying by χ_{2} does not give a new character.

Now look at χ_{S}. We have $<\chi_{S}, \chi_{S}>=3$ hance χ_{S} is a sum of three irreducible characters.

Next :

$$
\begin{gathered}
<\chi_{S}, \chi_{1}>=10 / 120+4 / 12+1 / 6+2 / 8+1 / 6=1, \\
<\chi_{S}, \chi_{3}>=40 / 120+8 / 12+1 / 6-1 / 6=1, \\
<\chi_{S}, \chi_{S}>=100 / 120+16 / 12+1 / 6+4 / 8+1 / 6=3
\end{gathered}
$$

Write $\chi_{S}=\sum \lambda_{i} \chi_{i}$, we have $\sum \lambda_{i}^{2}=3$ hence exactly three λ_{i} s are equal to 1 and we already have $\lambda_{1}=\lambda_{3}=1$.

Therefore

$$
\chi_{S}=\chi_{1}+\chi_{3}+\psi
$$

where ψ is some irreducible character.
We have

$$
\chi_{S}(1)=\chi_{1}(1)+\chi_{3}(1)+\psi(1)=\frac{1}{2}\left(\chi_{3}(1)^{2}+\chi_{3}(1)\right)=\frac{1}{2}(16+4)=10
$$

As $\chi_{1}(1)=1$ and $\chi_{3}(1)=4$, we find that $\psi(1)=5$.
Hence ψ is a new irreducible character, we let $\chi_{6}=\psi$. Using

$$
\chi_{6}(g)=\chi
$$

We find

$$
\chi_{6}: 5,1,-1,1,-1,1,0
$$

Finally, $\chi_{7}=\chi_{6} \chi_{2}$ is the last character.
We get the complete character table for S_{5} :

g_{i}	$g_{1}=1$	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}
χ_{1}	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	-1	-1	1
χ_{3}	4	2	1	0	0	-1	-1
χ_{4}	4	-2	1	0	0	1	-1
χ_{5}	6	0	0	-2	0	0	1
χ_{6}	5	1	-1	1	-1	1	0
χ_{7}	5	-1	-1	1	1	-1	0

Notice that all entries are integers !

2. Character table of S_{6}.

The group S_{6} is of order 720 .
It has 11 conjugugacy classes.
We denote them by their shape :

$$
\begin{gathered}
g_{1}=1, g_{2}=(2), g_{3}=(3), g_{4}=(2,2), g_{5}=(4), g_{6}=(3,2), g_{7}=(5) \\
g_{8}=(2,2,2), g_{9}=(3,3), g_{10}=(4,2), g_{11}=(6)
\end{gathered}
$$

The sizes of centralisers are $720,48,18,16,8,6,5,48,18,8,6$.
As before we have two linear characters χ_{1} and χ_{2}.
Next, as before, consider the permutation character : $\chi_{3}(g)=\mid$ fix $(g) \mid-$ 1 , the values of χ_{3} are $5,3,2,1,1,0,0,-1,-1,-1,-1$ and one calculates

$$
<\chi_{3}, \chi_{3}>=1
$$

We get another irreducible character by setting $\chi_{4}=\chi_{2} \chi_{3}$.
Next, as before we consider

$$
\chi_{3}^{2}=\chi_{S}+\chi_{A}
$$

We have

g_{i}	$g_{1}=1$	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
χ_{3}	5	3	2	1	1	0	0	-1	-1	-1	-1
χ_{S}	15	7	3	3	1	1	0	3	0	1	0
χ_{A}	10	2	1	-2	0	-1	0	-2	1	0	1

One finds that $<\chi_{A}, \chi_{A}>=1$. We let $\chi_{5}=\chi_{A}$, this is the new irreducible character.

In this case (unlike in the case of S_{5}), $\chi_{2} \chi_{5}=\chi_{6}$ is a new irreducible character.

Finally, we calculate:

$$
<\chi_{S}, \chi_{S}>=3,<\chi_{S}, \chi_{1}>=1,<\chi_{S}, \chi_{3}>=1
$$

hence, as before there is an irreducible character ψ such that

$$
\chi_{S}=\chi_{1}+\chi_{3}+\psi
$$

This gives χ_{7} of degree 9 and $\chi_{8}=\chi_{2} \chi_{7}$ is another irreducible character. The table so far is as follows:

g_{i}	$g_{1}=1$	g_{2}	g_{3}	g_{4}	g_{5}	g_{6}	g_{7}	g_{8}	g_{9}	g_{10}	g_{11}
χ_{1}	1	1	1	1	1	1	1	1	1	1	1
χ_{2}	1	-1	1	1	-1	-1	1	-1	1	1	-1
χ_{3}	5	3	2	1	1	0	0	-1	-1	-1	-1
χ_{4}	5	-3	2	1	-1	0	0	1	-1	-1	1
χ_{5}	10	2	1	-2	0	-1	0	-2	1	0	1
χ_{6}	10	-2	1	-2	0	-1	0	2	1	0	-1
χ_{7}	9	3	0	1	-1	0	-1	3	0	1	0
χ_{8}	9	-3	0	1	1	0	-1	-3	0	1	0

We will recover the three remining characters from orthogonality relations.

Let s be the permutation $(1,2)$ and t the permutation $(1,2)(3,4)$, these are elements of order two. It is a general fact that if g has order two, then $\chi(g)$ is an integer. Indeed, $\chi(g)$ is a sum of square roots of one, they are ± 1.

Let $\chi_{9}, \chi_{1} 0$ and χ_{11} be the three remaining characters.
Column orthogonality gives:

$$
\sum_{i=1}^{11} \chi_{i}(s)=48=\left|C_{G}(s)\right|
$$

Hence

$$
\chi_{9}(s)^{2}+\chi_{1} 0(s)^{2}+\chi_{11}(s)^{2}=2
$$

By reodering the characters, we assume that

$$
\chi_{9}(s)^{2}=\chi_{1} 0(s)^{2}=1 \text { and } \chi_{11}(s)^{2}=0
$$

Now, the character $\chi_{2} \chi_{9}$ is an irreducible character not equal to any of the $\chi_{1}, \ldots, \chi_{8}$ (because they come in pairs!)

By definition of χ_{2}, we have

$$
\chi_{2} \chi_{9}(s)=\chi_{2}(s) \chi_{9}(s)=-\chi_{9}(s)
$$

As $\chi_{9}(s)= \pm 1$, we see that $\chi_{2} \chi_{9} \neq \chi 9$ and can not be equal to χ_{11} $\left(\chi_{11}(s)=0\right)$ hence

$$
\chi_{2} \chi_{9}=\chi_{10}
$$

After, if necessary, renumbering the characters, we have

$$
\chi_{9}(s)=1, \chi_{10}(s)=-1
$$

We have completely determined the values of $\chi_{i} \mathrm{~S}$ at s. Now we have the table

g_{i}	1	s	t
χ_{9}	a	1	d
χ_{10}	b	-1	e
χ_{11}	c	0	f

Write orthogonality relations:

$$
\begin{array}{ll}
\sum \chi_{i}(1) \chi_{i}(s)=0 & \sum \chi_{i}(s) \chi_{i}(t)=0 \\
\sum \chi_{i}(t) \chi_{i}(t)=16 & \sum \chi_{i}(1) \chi_{i}(t)=0
\end{array}
$$

This gives

$$
\begin{array}{cc}
a-b=0 & d-e=0 \\
d^{2}+e^{2}+f^{2}=2 & a d+b e+c f=10
\end{array}
$$

and it is easy to see that the only solutions in integers are

$$
d=e=1 \quad f=0 \quad a=b=5
$$

Finally, using $\sum_{i} \chi_{i}(1)^{2}=720$ gives $c=16$.
The rest of the table is determined by column orthogonality...

3. Restriction and induction.

Let H be a subgroup of G. Then $\mathbb{C}[H] \subset \mathbb{C}[G]$ and any $\mathbb{C}[G]$-module V can be viewed as a $\mathbb{C}[H]$-module. This is called the restriction from G to H and we denote this module

$$
V \downarrow H
$$

Let χ be the character of V. The character of $V \downarrow H$ is obtained from χ by evaluating it on elements of H only, we denote it $\chi \downarrow H$. We call it the restriction of χ to H. Viewing χ as a function from G to \mathbb{C}, $\chi \downarrow H$ is simply the restriction of this function to H.

The inner product of characters of $G,<,\rangle_{G}$ yields, by restriction the inner product $<,>_{H}$ of characters of H. If χ is a character of G and ψ_{i} are irreducible characters of H, we have

$$
\chi \downarrow H=d_{1} \psi_{i}+\cdots+d_{r} \psi_{r}
$$

and we have

$$
d_{i}=<\chi \downarrow H, \psi_{i}>_{H}
$$

They satisfy the following

Proposition 3.1. Let χ be an irreducible character of G and $\psi_{1}, \ldots, \psi_{r}$ irreducible characters of H. Then

$$
\chi \downarrow H=d_{1} \psi_{1}+\cdots+d_{r} \psi_{r}
$$

where the d_{i} satisfy

$$
\sum d_{i}^{2} \leq|G: H|
$$

with equality if and only if $\chi(g)=0$ for all $g \in G \backslash H$.
Proof. We have

$$
\sum d_{i}^{2}=<\chi \downarrow H, \chi \downarrow H>_{H}=\frac{1}{|H|} \sum_{h \in H} \chi(h) \overline{\chi(h)}
$$

As χ is an irreducible character, we have

$$
1=<\chi, \chi>_{G}=\frac{1}{|G|} \sum_{h \in H} \chi(h) \overline{\chi(h)}+K=\frac{|H|}{|G|} \sum d_{i}^{2}+K
$$

with $K=\frac{1}{|G|} \sum_{g \notin H} \chi(g) \overline{\chi(g)}$. Of course $K \geq 0$ and $K=0$ if and only if $\chi(g)=0$ for all $g \notin H$.

We have the following:
Proposition 3.2. Let H be a subgroup of G and ψ a non-zero character of H. There exists an irreducible character χ of G such that

$$
<\chi \downarrow H, \psi>\neq 0
$$

Proof. Let χ_{i} be irreducible characters of G and let $\chi_{\text {reg }}$ be the regular character. We have

$$
\chi_{r e g}=\sum_{i=1}^{r} \chi_{i}(1) \chi_{i}
$$

Now

$$
0 \neq \frac{|G|}{|H|} \psi(1)=<\chi_{\text {reg }} \downarrow H, \psi>_{H}=\sum \chi_{i}(1)<\chi_{i} \downarrow H, \psi>_{H}
$$

(the first equality here comes from the fact that $\chi_{\text {reg }}(1)=|G|$ and zero otherwise).

It follows that some $<\chi_{i} \downarrow H, \psi>\neq 0$.
We can obtain more information when H is a normal subgroup of G.

Theorem 3.3 (Clifford's theorem). Suppose H is a normal subgroup of G and let χ be an irreducible character of G. Write

$$
\chi \downarrow H=d_{1} \psi_{1}+\cdots+d_{r} \psi_{r}
$$

Then
(1) The $\psi_{i} s$ all have the same degree.
(2)

$$
\chi \downarrow H=e\left(\psi_{1}+\cdots+\psi_{m}\right)
$$

Proof. Let V be a $\mathbb{C}[G]$-module with character χ (necessarily irreducible) and U an irreducible $\mathbb{C}[H]$-submodule of $V \downarrow H$. For $g \in G$, let

$$
g U=\{g v: v \in U\}
$$

As H is a normal subgroup of $G\left(g \mathrm{Hg}^{-1}=H\right), g U$ is a $\mathbb{C}[H]$-submodule of $V \downarrow H$. If W is a $\mathbb{C}[H]$-submodule of $g U$, then $g^{-1} W$ is a $\mathbb{C}[H]$ submodule of V. Now, U is ireducible, hence $W=\{0\}$ or $W=g U$. It follows that $g U$ is an irreducible submodule of $V \downarrow H$.

Of course all $g U$ have the same dimension. We have a direct sum decomposition:

$$
V \downarrow H=\oplus_{g \in G} g U
$$

(the sum is direct because modules are simple) and ψ_{i} s are characters of some of the $g U \mathrm{~s}$ which all have the same dimension (equal to d_{i}). This proves the first claim.

For the second, let

$$
e=<\chi \downarrow H, \psi_{1}>
$$

and let X_{1} be the submodule of $V \downarrow H$ whose chaacter is $e \psi_{1}$. Then

$$
X_{1}=U_{1} \oplus \cdots \oplus U_{e}
$$

where each U_{e} has character ψ_{1}.
Now, for any g in $G, g X_{1}$ is a direct sum of isomorphic $\mathbb{C}[H]$-modules $g U_{i}$

We just need an argument to show that they are isomorphic. We have $U_{i} \cong U_{j}$ and we need to show that $g U_{i} \cong g U_{j}$. If $\phi: U_{i} \longrightarrow U_{j}$ is an isomorphism of $\mathbb{C}[H]$-modules, then $\theta: g U_{i} \longrightarrow g U_{j}$ defined by $\theta(g u)=g \phi(u)$. Verifications that this is a $\mathbb{C}[H]$ morphism (using the fact that H is normal) are left to the reader.

The module $V \downarrow H$ is a sum of the $g X_{1}$. We write

$$
V \downarrow H=X_{1} \oplus \cdots \oplus X_{m}
$$

where $X_{i} \mathrm{~s}$ are $g X_{1}$ for some $g \in G$ and pairwise non-isomorphic.
It follows that

$$
\chi \downarrow H=e\left(\psi_{1}+\cdots+\psi_{m}\right)
$$

Suppose now that the index of H in G is two. We will typically be interested in $A_{n} \subset S_{n}$. Then for any irreducible character χ of G, either $\chi \downarrow H$ is irreducible or $\chi \downarrow H$ is a sum of two irreducible characters of the same degree.

To see this, write

$$
\chi \downarrow H=d_{1} \psi_{1}+\cdots+d_{r} \psi_{r}
$$

where $\sum_{i} d_{i}^{2} \leq 2$. Hence $d_{i} \mathrm{~s}$ are either 1,1 or 1 .
As we have $G / H \cong C_{2}$, we can define a character λ of G by

$$
\lambda(g)=1 \text { if } g \in H
$$

and

$$
\lambda(g)=-1 \text { if } g \notin H
$$

In the case $G=S_{n}$ and $H=A_{n}$, this is simply the sign.
Now, for irreducible characters χ of G, χ and $\lambda \chi$ are irreducible of the same degree. We have

Proposition 3.4. The following are equivalent
(1) $\chi \downarrow H$ is irreducible
(2) $\chi(g) \neq 0$ for some $g \in G$ with $g \notin H$
(3) The characters χ and $\lambda \chi$ are not equal.

We have seen that $\sum d_{i}<2$ (strict inequality)if and only if $\chi(g) \neq 0$ for some $g \in G$ and $g \notin H$. The inequality is strict precisely when $\sum d_{i}^{2}<2$.

Also $\lambda \chi(g)=\chi(g)$ if $g \in H$ and $-\chi(g)$ is $g \notin H$. So $\chi(g) \neq 0$ for $g \notin H$ if and only if $\lambda \chi \neq \chi$.
Proposition 3.5. Suppose that H is a normal subgroup of index 2 in G and that \mid chi is an irreducible character of G such that $\chi \downarrow H$ is irreducible.

If ϕ is an irreducible character of G which satisfies

$$
\phi \downarrow H=\chi \downarrow H
$$

then either $\phi=\chi$ or $\phi=\chi \lambda$.
Proof. We have

$$
(\chi+\lambda \chi)=2 \chi(g) \text { if } g \in H \text { and } 0 \text { otherwise }
$$

Therefore

$$
<\chi+\lambda \chi, \phi>=\frac{1}{|G|} \sum_{g \in H} 2 \chi(g) \overline{\phi(g)}=\frac{1}{H} \sum_{g \in H} \chi(g) \overline{\phi(g)}
$$

But $<\chi \downarrow H, \phi \downarrow H>=1$ and $\phi \downarrow H=\chi \downarrow H$ hence $<\chi+\lambda \chi, \phi>=1$ which implies that either $\phi=\chi$ or $\phi=\lambda \chi$.

Finaly we analyse the case where the character $\chi \downarrow H$ is reducible.

Proposition 3.6. Suppose that H is a normal subgroup of index two of G and χ an irreducible character of G for which $\chi \downarrow H$ is the sum of two irreducible characters $\chi \downarrow H=\psi_{1}+\psi_{2}$. If ϕ is a character such that $\phi \downarrow H$ has ψ_{1} or ψ_{2} in its decomposititon, then $\phi=\chi$.

Proof. We have $\chi(g)=0$ for $g \notin H$, therefore

$$
<\phi, \chi>_{G}=\frac{1}{2}<\phi \downarrow H, \chi \downarrow H>_{H}
$$

if $\phi \downarrow H$ has ψ_{1} or ψ_{2} as constituent, then $<\phi \downarrow H, \chi \downarrow H>_{H} \neq 0$ hence $<\phi, \chi>_{G} \neq 0$ in which case it must be one. Therefore $\phi=\chi(\chi$ is irreducible!).

To summarise:

Suppose G is a finite group and H a subgroup of index 2 .
(1) Each irreducible character χ of G non-zero somewhere outside of H restricts to an irreducible character of H.

These characters come in pairs χ and $\lambda \chi$, they restrict to the same character on H.
(2) If χ irreducible on G is zero everywhere outside H, then χ restricts to the sum of two distinct irreducible characters of same degree.

These two characters come from no other irreducible character of G.
(3) Every irreducible character appears among those obtained by restricting irreducible characters of G.

Let ψ be an irreducible character of H. There exists χ irreducible of G such that $<\chi \downarrow H, \psi>\neq 0$. Now, either $\chi \downarrow H$ is irreducible in which case $\chi \downarrow H=\psi$ (necessarily $<\chi \downarrow H, \psi>=1$) or $\chi \downarrow H=\psi_{1}+\psi_{2}$ in which case we see that ψ is ψ_{1} or ψ_{2}.
Let us apply what preceeded to A_{5}.
The group $H=A_{5}$ is of order 60 and is a normal subgroup of index 2 in S_{5}. It has 5 conjugacy classes $g_{1}=1, g_{2}=(123), g_{3}=(1,2)(3,4)$, $g_{4}=(12345)$ and $g_{5}=(13452)$ and centraliserz have sizes $60,3,4,5$ and 5.

Look at our 7 characters $\chi_{1}, \ldots, \chi_{7}$ of S_{5} and the table we constructed previously. We see that χ_{1}, χ_{3} and χ_{6} are nonzero somewhere outside of A_{4}. Therefore $\chi_{1} \downarrow H=\psi_{1}, \chi_{3} \downarrow H=\psi_{3}$ and $\chi_{6} \downarrow H=\psi_{6}$ give three irreducible characters of H.

Notice that $\chi_{5}(g)=0$ for $g \notin H$. Hence $\chi_{5} \downarrow H=\psi_{4}+\psi_{5}$ where ψ_{4} and ψ_{5} are distinct irreducible characters of H and they are of degree three (they have the same degree and $\left.\psi_{4}(1)+\psi_{5}(1)=\chi_{5}(1)=6\right)$.

Because χ_{2} and χ_{1} restrict to the same character; χ_{4}, χ_{3} restrict to the same character and χ_{7}, χ_{6} restrict to the same character, we see that $\psi_{1}, \ldots, \psi_{5}$ are distinct irreducible characters of A_{5} and this is a complete list.

We have the table:

g_{i}	$g_{1}=1$	g_{2}	g_{3}	g_{4}	g_{5}
ψ_{1}	1	1	1	1	1
ψ_{2}	4	1	0	-1	-1
ψ_{3}	5	-1	1	0	0
ψ_{4}	3	α_{2}	α_{3}	α_{4}	α_{5}
ψ_{5}	3	β_{2}	β_{3}	β_{4}	β_{5}

We will recover $\alpha_{i} \mathrm{~S}$ and β_{i} s by column orthogonality.
Because $\chi_{5} \downarrow H=\psi_{4}+\psi_{5}$, we have

$$
\alpha_{2}+\alpha_{2}=0, \quad \alpha_{3}+\alpha_{3}=-2, \quad \alpha_{4}+\beta_{4}=\alpha_{5}+\beta_{5}=1
$$

By column orthogonality, we get

$$
\begin{aligned}
3 & =3+\alpha_{1}^{2}+\alpha_{2}^{2} \\
4 & =2+\alpha_{3}^{2}+\beta_{3}^{2} \\
5=2+\alpha_{4}^{2}+\beta_{4}^{2} & =2+\alpha_{5}^{2}+\beta_{5}^{2}
\end{aligned}
$$

This immediately gives $\alpha_{2}=\beta_{2}=0$ and $\alpha_{3}=\beta_{3}=-1$.
Next, α_{4} and β_{4} are roots of the quadratic equation

$$
x^{2}-x-1=0
$$

This gives

$$
\alpha_{4}=\frac{1+\sqrt{5}}{2}, \quad \beta_{4}=\frac{1-\sqrt{5}}{2}
$$

Similarly (and because $\psi_{4} \neq \psi_{5}$),

$$
\alpha_{5}=\frac{1+\sqrt{5}}{2}, \quad \beta_{5}=\frac{1-\sqrt{5}}{2}
$$

This gives a complete table for A_{5}. Notice, that unlike in the case of S_{5}, the values of characters are not integers, in fact they are not even rational.

4. Induction and Frobenius reciprocity.

Let H be a subgroup of a finite group G.
Let U be a $\mathbb{C}[H]$-submodule of $\mathbb{C}[H] \subset \mathbb{C}[G]$. We let $U \uparrow G$ the $\mathbb{C}[G]$-submodule $\mathbb{C}[G] U$ of $\mathbb{C}[G]$

This $U \uparrow G$ is a $\mathbb{C}[G]$-submodule of $\mathbb{C}[G]$ called the $\mathbb{C}[G]$-submodule induced from U.

The following properties are left without proofs.

Proposition 4.1. (1) If U and V are $\mathbb{C}[H]$-submodules of $\mathbb{C}[H]$ and U is $\mathbb{C}[H]$-isomorphic to V. Then $U \uparrow G$ is $\mathbb{C}[G]$-isomorphic to $V \uparrow G$.
(2) (this is the corrolary of the above) Let U be a $\mathbb{C}[H]$-submodule of $\mathbb{C}[H]$. Suppose that

$$
U=U_{1} \oplus \cdots \oplus U_{m}
$$

where U_{i} s are $\mathbb{C}[H]$-submodules. Then

$$
U \uparrow G=U_{1} \uparrow G \oplus \cdots \oplus U_{m} \uparrow G
$$

The second property allows to define the induced module for any $\mathbb{C}[H]$-module (it is always a direct sum of submodules of $\mathbb{C}[H]$).

Ona can define the induced representation by choosing the set of representatives for the coset space G / H, then form the direct sum

$$
\oplus_{e \in G / H} e V
$$

with a natural action of G.
If V is a $\mathbb{C}[H]$ module, then

$$
\operatorname{dim}(V \uparrow G)=[G: H] \operatorname{dim}(V)
$$

It is easy to see the following (which shows that the induction is transitive):

Theorem 4.2. Suppose H and K are subgroups of G such that $H \subset$ $K \subset G$. If U is $a \mathbb{C}[H]$-module, then

$$
(U \uparrow K) \uparrow G \cong U \uparrow G
$$

A few examples of induced representations.
(1) Let 1_{H} be the trivial representation of H. Then $1_{H} \uparrow G$ is the premutation representation on G / H (the set of cosets.) That means, $1_{H} \uparrow G$ acts as $x H \mapsto g x H$.

For example the representation induced on S_{n} by the trivial representation of A_{n} is the 2-dimensional representation ρ as follows : Choose basis $\left\{e_{-1}, e_{1}\right\}$, then e_{i} is sent to $e_{\epsilon(\sigma)}$.

We see that $e_{1}+e_{-1}$ is a stable subspace, so is $e_{1}-e_{-1}$. Hence ρ is the sum of two one dimensional representations : the trivial one and the non-trivial one.

The induces representation induced by the trivial representation of the trivial subgroup
(2) The induced representation of the regular representation of H is the regular representation of G.

Another example of induced representation.
Take $G=S_{3}$. This is generated by $(1,2,3)$ and $\sigma=(1,2)$. Let H be the subgroup generated by $(1,2,3)$; it is cyclic of order three. Consider the usual representation $\rho_{H}:(1,2,3) \mapsto \zeta_{3}$ on the one-dimennsional vector space V. We know already that $\rho_{H} \uparrow G$ will be two dimensional.

We have

$$
V \uparrow G=V \oplus \sigma V
$$

Let v_{1} be the basis of V and $v_{2}=(1,2) v_{1}$.
Then 1 acts as the identity (this is always the case).

$$
(1,2) v_{1}=v_{2}, \quad(1,2) v_{2}=v_{1}
$$

Hence $(1,2)$ is represented by the matrix

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We have $(1,2,3) v_{1}=\zeta_{3} v_{1}$. Now, notice that $(1,2,3)(1,2)=(1,2)(1,2,3)^{2}(=$ $(1,3)$). This gives

$$
(1,2,3) v_{2}=(1,2,3)(1,2) v_{1}=(1,2)(1,2,3)^{2} v_{1}=\zeta_{3}^{2}(1,2) v_{1}=\zeta_{3}^{2} v_{2}
$$

this gives

$$
(1,2,3) \mapsto\left(\begin{array}{cc}
\zeta_{3} & 0 \\
0 & \zeta_{3}^{2}
\end{array}\right)
$$

That completely determines the induced representation.
If ψ is a character of H, let U be an $\mathbb{C}[H]$-module of which ψ is a character. The the character $\psi \uparrow G$ of $U \uparrow G$ is called the induced character (from ψ).

Our aim is to prove the following theorem:
Theorem 4.3 (Frobenius reciprocity theorem). Let H be a subgroup of G. Let χ be a character of G and let ψ be a character of H. Then

$$
<\psi \uparrow G, \chi>_{G}=<\psi, \chi \downarrow H>_{H}
$$

We will use a lemma:
Lemma 4.4. Let V and W be $\mathbb{C}[G]$-modules with characters χ and ψ respectively. Then

$$
\operatorname{dim}\left(\operatorname{Hom}_{\mathbb{C}[G]}(V, W)\right)=<\chi, \psi>
$$

Proof. Write

$$
V=V_{1}^{c_{1}} \oplus \cdots \oplus V_{m}^{c_{m}}
$$

where $V_{i} \mathrm{~S}$ are simple submodules of $\mathbb{C}[G]$. Similarly

$$
W=V_{1}^{d_{1}} \oplus \cdots \oplus V_{k}^{d_{m}}
$$

By Shur's lemma

$$
\operatorname{dim}\left(\operatorname{Hom}_{\mathbb{C}[G]}\left(V_{i}, V_{j}\right)\right)=\delta_{i, j}
$$

It follows that

$$
\operatorname{dim}\left(\operatorname{Hom}_{\mathbb{C}[G]}(V, W)\right)=\sum_{i=1}^{k} c_{i} d_{i}
$$

But on the other hand:

$$
\chi=\sum c_{i} \chi_{i} \text { and } \psi=\sum d_{i} \chi_{i}
$$

(where χ_{i} s are all characters of G). It follows that

$$
<\chi, \psi>=\sum c_{i} d_{i}
$$

Another lemma.
Lemma 4.5. Let U be a $\mathbb{C}[H]$-submodule of $\mathbb{C}[H]$ and V a $\mathbb{C}[G]$ submodule of $\mathbb{C}[G]$. Then

$$
\operatorname{dim} \operatorname{Hom}_{\mathbb{C}[G]}(U \uparrow G, V)=\operatorname{dim} \operatorname{Hom}_{\mathbb{C}[H]}(U, V \downarrow H)
$$

Proof. Let $\phi \in \operatorname{Hom}_{\mathbb{C}[G]}(U \uparrow G, V)$ and let $\bar{\phi} \in \operatorname{Hom}_{\mathbb{C}[H]}(U, V \downarrow H)$ be the restriction of ϕ to U. The map

$$
\phi \mapsto \bar{\phi}
$$

is obviously \mathbb{C}-linear. We will show that this is an isomorphism.
We are going to use the following lemma:
Lemma 4.6. Let G be a finite group and H a subgroup. Let U be a $\mathbb{C}[H]$-submodule of $\mathbb{C}[H]$. Let θ be a $\mathbb{C}[H]$-homomorphism from U to $\mathbb{C}[G]$. Then there exists an r in $\mathbb{C}[G]$

$$
\theta: u \mapsto u r
$$

Proof. Let θ be a homomorphism $U \longrightarrow \mathbb{C}[G]$. Let W be a $\mathbb{C}[H]$ module such that $\mathbb{C}[G]=U \oplus W$. Define $\alpha: \mathbb{C}[G] \longrightarrow \mathbb{C}[G]$ by $\alpha(u+$ $w)=\theta(u)$.

Then α is an endomorphism of $\mathbb{C}[G]$, viewed as $\mathbb{C}[H]$-module.
Let $r=\alpha(1) \in \mathbb{C}[G]$. Then

$$
\alpha(u)=\theta(u)=\alpha(1 u)=\alpha(1) \alpha(u)=r u
$$

because $u \in U \subset \mathbb{C}[H]$

First let us show the surjectivity.
Let $\phi \in \operatorname{Hom}_{\mathbb{C}[H]}(U, V \downarrow H)$. There exists $r \in \mathbb{C}[G]$ such that $\phi(u)=u r$. Define $\theta: U \uparrow G \longrightarrow \mathbb{C}[G]$ by

$$
\theta(s)=s r
$$

Then $\theta \in \operatorname{Hom}_{\mathbb{C}[G]}(U \uparrow G, V)$ and $\bar{\theta}=\phi$. This proves the surjectivity.
Now, suppose $u r_{1}=u r_{2}$ for all $u \in U$, then $g u r_{1}=g u r_{2}$ for all $g \in G, u \in U$, hence $s r_{1}=s r_{2}$ for all $s \in U \uparrow G$. It follows that $\theta \longrightarrow \bar{\theta}$ is injective.

This finishes the proof.
Now, to derive the Frobenius reciprocity, we just write

$$
\chi=\sum d_{i} \chi_{i} \text { and } \psi=\sum e_{j} \psi_{j}
$$

Then
$<\psi \uparrow G, \chi>_{G}=\sum_{i, j} e_{j} d_{i}<\psi_{j} \uparrow G, \chi_{i}>_{G}=\sum_{i, j} e_{j} d_{i}<\psi_{j}, \chi_{i} \downarrow H>_{H}=<\psi, \chi \downarrow H>_{H}$
This finishes the proof of Frobenius reciprocity.
Let us illustrate this with the example $G=S_{3}$.
We have three conjugacy classes and the character table is as follows:

g	1	$(1,2)$	(123)
$C_{G}(g)$	6	2	3
χ_{1}	1	1	1
χ_{2}	1	-1	1
χ_{3}	2	0	-1

and the subgroup $H=<a=(123)>$ and let χ the character of (123) $\mapsto \zeta$. The conjugacy classes of H are of course $1, a, a^{2}$ and the values taken by χ are $1, \zeta, \zeta^{2}$. Let $\psi_{1}, \psi_{2}, \psi_{3}$ be the three irreducible characters of H. Here $\chi=\psi_{2}$.

We know that $\chi \uparrow G=\chi_{3}$. Its values are $2,0,-1$.
Notice that because χ_{3} is irreducible, $\left.\left\langle\chi_{3}, \chi_{2}\right\rangle=\chi_{3}, \chi_{1}\right\rangle=0$
The values taken by $\chi_{3} \downarrow H$ are $2,-1,-1$. Notice that this is $\chi_{3} \downarrow$ $H=\psi_{2}+\psi_{3}$.

We have
Let us calculate

$$
<\chi \uparrow G, \chi_{3}>=<\chi_{3}, \chi_{3}>=1
$$

Now,

$$
<\chi, \chi_{3} \downarrow H>=<\psi_{2}, \psi_{2}+\psi_{3}>=1+0=1
$$

They agree as predicted by Frobenius reciprocity.
4.1. Values of induced characters. There is a simple way to evaluate the values of induced characters. Let ψ be a character of H and define the function $\psi: G \longrightarrow \mathbb{C}$ by $\psi(g)$ if $g \in H$ and 0 otherwise (we extends ϕ by zero.)

Proposition 4.7. The values of $\psi \uparrow G$ are given by

$$
(\psi \uparrow G)(g)=\frac{1}{|H|} \sum_{y \in G} \psi\left(y^{-1} g y\right)
$$

for $g \in G$.
Proof. Define $f(g)=\frac{1}{|H|} \sum_{y \in G} \psi\left(y^{-1} g y\right)$. We wish to prove that $f=$ $\psi \uparrow G$. It is trivial to check that $f\left(w^{-1} g w\right)=f(g)$ hence f is a class function. Rememeber that irreducible characters form a basis of the vector space of class functions. To show that $f=\psi$, is suffices to check that

$$
<f, \chi>_{G}=<\psi \uparrow G, \chi>_{G}
$$

for all irreducible characters of G. Let χ be an irreducible character.

$$
<f, \chi>_{G}=\frac{1}{|G|} \sum_{g \in G} f(g) \overline{\chi(g)}=\frac{1}{|G||H|} \sum_{g, y \in G} \psi\left(y^{-1} g y\right) \overline{\chi(g)}
$$

Let $x=y^{-1} g y$. Then

$$
<f, \chi>_{G}=\frac{1}{|G||H|} \sum_{x, y \in G} \psi(x) \overline{\chi\left(y x y^{-1}\right)}
$$

Now, $\psi(x)=0$ if $x \notin H$ and $\chi\left(y x y^{-1}\right)=\chi(x)$ for all $y \in G$. Therefore

$$
<f, \chi>_{G}=\frac{1}{|H|} \sum_{x \in H} \psi(x) \overline{\chi(x)}<\psi, \chi \downarrow H>_{H}
$$

Now, by Frobenius reciprocity, $<f, \chi>_{G}=<\psi \uparrow G, \chi>_{G}$ which shows exactly that $f=\psi \uparrow G$.

Corollary 4.8.

$$
(\psi \uparrow G)(1)=\frac{|G|}{|H|} \psi(1)
$$

This is immediate.
Let $x \in G$ Define a class function f_{x}^{G} on G by $f_{x}^{G}(y)=1$ if $y \in x^{G}$ and 0 otherwise. (this is simply the characteristic function of the conjugacy class x^{G}).

Proposition 4.9. Let χ be a character of G and $x \in G$. Then

$$
<\chi, f_{x}^{G}>_{G}=\frac{\chi(x)}{\mid C_{G}(x)}
$$

Proof. This is an easy calculation.

$$
\begin{aligned}
<\chi, f_{x}^{G}>_{G} & =\frac{1}{|G|} \sum_{g \in G} \chi(g) f_{x}^{G}(g)=\frac{1}{|G|} \sum_{g \in x^{G}} \chi(g) \\
& =\frac{\left|x^{G}\right|}{|G|} \chi(x)=\frac{\chi(x)}{\left|C_{G}(x)\right|}
\end{aligned}
$$

Proposition 4.10. Let ψ be a character of $H \subset G$ and $x \in G$.
(1) if no element of x^{G} lies in H, then $(\psi \uparrow G)(x)=0$
(2) if some element of x^{G} lies in H, then

$$
(\psi \uparrow G)(x)=\left|C_{G}(x)\right|\left(\frac{\psi\left(x_{1}\right)}{\left|C_{G}\left(x_{1}\right)\right|}+\cdots+\frac{\psi\left(x_{m}\right)}{\left|C_{G}\left(x_{m}\right)\right|}\right)
$$

where $x_{1}, \ldots, x_{m} \in H$ and $f_{x}^{G} \downarrow H=f_{x_{1}}^{H}+\cdots+f_{x_{m}}^{H}$.
Proof. We have

$$
\frac{(\psi \uparrow G)(x)}{\left|C_{G}(x)\right|}=<\psi \uparrow G, f_{x}^{G}>_{G}=<\psi, f_{x}^{G} \downarrow H>_{H}
$$

If no element of x^{G} lies in H, then $f_{x}^{G} \downarrow H=0$ and hence $(\psi \uparrow G)(x)=$ 0

Otherwise

$$
\frac{(\psi \uparrow G)(x)}{\left|C_{G}(x)\right|}=<\psi, f_{x_{1}}^{H}+\cdots+f_{x_{m}}^{H}>_{H}=\left|C_{G}(x)\right|\left(\frac{\psi\left(x_{1}\right)}{\left|C_{G}\left(x_{1}\right)\right|}+\cdots+\frac{\psi\left(x_{m}\right)}{\left|C_{G}\left(x_{m}\right)\right|}\right)
$$

