
SEMISIMPLE MODULES AND ALGEBRAS.

ANDREI YAFAEV

We start with some definitions.

Definition 0.1. A ring is a set R endowed with two operations : addi-
tion, denoted + and multiplication, denoted · that satisfy the following
conditions

• a+ b = b+ a (+ is commutative)
• a+ (b+ c) = (b+ a) + c (+ is distributive)
• (ab)c = a(bc) (· is distributive)
• a(b+ c) = ab+ ac
• (b+ c)a = ba+ ca

In addition, there is an element 0 ∈ R satisfying a + 0 = 0 + a = a.
For each a ∈ R, there is an element −a such that a + (−a) = 0 (note
that this implies that (R,+) is an abelian group).

There is an element 1 in R such that 1 · a = a · 1 = a.

Examples of rings include Z, F (field), F [X], Z/nZ, F [X]/I where
I ⊂ F [X] is an ideal. These rings are commutative (i.e. multiplication
is commutative).

In this course we will be mainly concerned with some non-commutative
rings. An example of this is Mn(F ) (matrices over a field F ). Another
example is the set of upper triangular matrices. More generally, for
any ring R, the set Mn(R) of matrices with entries in R is a ring.

A ring D is called a division ring if any a ∈ D, a 6= 0 has a two
sided inverse i.e. there exists an a−1 ∈ D such that aa−1 = a−1a = 1.

A field is of course a division ring.
We now define modules over rings.

Definition 0.2. A (left) module M over a ring R is an abelian group
M with a map φ from R×M to M satisfying the following properties
(we write rm for φ(r,m)):

• 1m = m for all m ∈M
• r(m+ n) = rm+ rn for all r ∈ R and m,n ∈M
• (r + s)m = rm+ sm for all r, s ∈ R and m ∈M
• r(sm) = (rs)m for all r, s ∈ R and m ∈M

We define the notion of right R-module in an exactly analogous way
with multiplication by elements of R on the right.
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Take any abelian group, then it is naturally a Z-module.
Let R be a field F . An F -module is a vector space over F .
Let R be a commutative ring. An ideal in R is an R-module.
Take any ring R and a ∈ R. Then the set Ra is a left R-module and

aR a right R-module.
Mn(F ) is a module over both F (in which case it is simply viewed

as a vector space of dimension n2) and the ring Mn(F ).
Let R be a ring, then R[X] is a module over R.
A module M is called finitely generated if there is a finite subset of

M such that any element of M is a linear combination of elements of
this set.

For example Mn(F ) is finitely generated over F while F [X] is not.
In this course we will mainly deal with finitely generated

modules. Unless explicitly stated otherwise, the modules are

assumed to be finitely generated.

Definition 0.3. Let M be an R-module and let N be a subgroup of M .
We say that N is a (left) R-submodule of M (often simply submodule)
if N is a subgroup of (M,+) and rn ∈ N for all r ∈ R and n ∈ N .

If M is an R-module, v ∈M , then

Rv = {av : a ∈ R}

is a left submodule of M .
Let R be a commutative ring. Submodules of R are exactly the

ideals. If R is non-commutative, left R-submodules of R are called left
ideals, right submodules are called right ideals. Subgroups that are
both right and left ideals are called two-sided ideals.

Consider the ring Mn(R) of n × n matrices over a ring R. Fix 1 ≤
j ≤ n. Let I be the set of matrices with zeros outside the jth column.
Then I is a left ideal (exercise).

Similarly, fix 1 ≤ j ≤ n. The set of matrices with zeros outside of
jth row is a right ideal.

Look now at two-sided ideals.

Lemma 0.1. Every two-sided ideal of Mn(R) is of the form Mn(I) for
a two sided ideal I of R.

Proof. Let J ⊂ Mn(R) be an ideal. Let Ei,j be the matrix with 1 at
the position (i, j) and zero elsewhere. Recall that matrices Ei,j satisfy
the relation:

Ei,jEj,k = Ei,k

and for a matrix A = (ai,j), we have

Em,iAEj,k = ai,jEm,k
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Let

I = {r ∈ R : rE1,1 ∈ J}

This is a two sided ideal of R. Indeed, let a be in R and r in I. We
have (aE1,1)(rE1,1) = arE1,1 hence ar ∈ I. Similarly, ra ∈ I.

For any matrix A in J we have

ai,jE1,1 = E1,jAEj,1

As J is an ideal, the right-hand side belongs to J and hence ai,j ∈ I.
It follows that J ⊂Mn(I).

Furthermore, if r ∈ I, then Ei,1(rE1,1)E1,j = rEi,j. As rE1,1 ⊂ J
and J is a two-sided ideal, we see that rEi,j ∈ J for all r ∈ I. As any
element of Mn(I) is a sum of elements of the form rEi,j, r ∈ I, we see
that Mn(I) is contained in J . We have shown that J = Mn(I). �

A consequence of this lemma is the following. Suppose R = F is
a field. The only ideals of F are {0} and F itself, hence the only
two-sided ideals of Mn(F ) are {0} and Mn(F ).

More generally, if D is a division ring, then the only two-sided ideals
of Mn(D) are {0} and Mn(D).

Let M be a module and N a submodule. As N is an abelian sub-
group, one has a quotient M/N (as abelian groups) which is endowed
with the structure of R-submodule by r(m +N) = rm +N for r ∈ R
and m+N ∈M/N .

LetN1 andN2 be two submodules ofM . One defines the sumN1+N2

as

N1 +N2 = {x+ y : x ∈ N1, y ∈ N2} ⊂M

This is a submodule of M . The sum is direct (denoted N1 ⊕ N2) if
N1 ∩N2 = {0}.

One says that a submodule N of M is a direct summand if there
exists a submodule N ′ of M such that

M = N ⊕N ′

An important example of a ring is the ring H of quaternions. It is
defined as follows :

H = {a · 1 + b · i+ c · j + d · k : a, b, c, d ∈ R}

where i2 = j2 = k2 = −1 and

ij = k, jk = i, ki = j

and

ji = −k, kj = −i, ik = −j
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The ring H is an R module. It is also a C module:

a · 1 + b · i+ c · j + d · k = a+ bi+ (c+ ib)j(k = ij!)

Hence by setting C = {a+ bi ∈ H}, we get H = C⊕Cj. Note that for
z ∈ C, we have jz = zj ! This means that the structures of left and
right C-modules on H differ.

The ring H is a division ring (exercise).

Definition 0.4. Let M,N be two R-modules. A homomorphism φ : M −→
N is a group homomorphism satisfying

φ(rm) = rφ(m)

The kernel ker(φ) of φ is the set of elements of M mapping to zero in
N .

The kernel and the image of φ are submodules of M and N respec-
tively.

Every module has at least two submodules, namely {0} and M itself.
We now introduce a very important notion :

Definition 0.5. A non-sero module M is called simple (one also says
irreducible) if the only submodules of M are 0 and M .

Lemma 0.2. Any simple R-module M is generated by any of its non-
zero vectors i.e. for any v ∈M , v 6= 0, M = Rv.

Proof. Let v ∈M be a non-zero vector, then Rv is a non-zero submod-
ule of M . As M is simple, Rv = M . �

A field F is simple, viewed as a module over itself.
The F -module F n for n > 1 is not simple, indeed any non-zero

proper vector subspace is a non-trivial submodule.
It is not simple as F -module, indeed, as an F -module, it is isomor-

phic to to F n.
We prove the following important result.

Lemma 0.3 (Shur’s lemma). Any non-zero homomorphism between
simple R-modules is an isomorphism.

Proof. Let M and N be simple R-modules and let φ : M −→ N be
an R-module homomorphism. As ker(φ) is a submodule of M and
different from M (because φ 6= 0!), one has ker(φ) = {0}.

Similarly, im(φ) is a non-zero submodule of M hence im(φ) = M .
This shows that φ is an isomorphism. �

Let D be a division ring. The module Mn(F ) is not simple as a left
or a right module. Indeed, consider the subset Cj of Mn(D) consisting
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of matrices which are zero everywhere outside of jth column. This is
a left Mn(D) submodule of Mn(D). This is easily checked by matrix
multiplication. This module is in fact simple as Mn(D)-module. Let
M be a non-trivial left submodule of Cj. It has a non-zero vector v.
The vector v (viewed as a matrix in Mn(D)) is of the form

v =
n

∑

l=1

clEl,j

One of the cls, say ck is not zero. We have

c−1
k Ei,kv = Ei,j ∈M

And this for any i! As the Ei,j generate Cj, we conclude that M = Cj.
Notice that we used in an essential way that the matrices are over a
division ring (we had to invert ck).

It is clear that all Cjs are isomorphic as Mn(D)-modules. In fact
they are all isomorphic to the following module: consider Dn as the
set of column vectors with entries in D. This is naturally a left Mn(D)
module (multiplying a column vector on the left by a matrix).

This module is isomorphic to any of the Cj. More generally:

Lemma 0.4. Any simple Mn(D) module is isomorphic to the module
Dn.

Proof. Let M be a simple Mn(D) module. Then by 0.2, M = Mn(D)v
for a non-zero vector v ∈M . We also have Dn = Mn(D)e1 where e1 is
the first vector of the standard basis. The R-module homomorphism
M −→ Dn sending v to e1 is non-zero hence is an isomorphism. �

We will now give an alternative version of this lemma. To do this, one
need to introduce yet another definition. Consider a module M . An R-
module homomorphism M −→M is called an endomorphism. The set
of all endomorphisms, denoted EndR(M) is a ring. This is an exercise:
the multiplication being the composition of endomorphisms and the
identity is naturally the identity endomorphism, sending x ∈M to x.

Lemma 0.5 (Shur, version 2). Let M be a simple module, then End(M)
is a division ring.

If F is a field viewed as a module over itself, then EndF (F ) = F .
Consider the module F n viewed as a left Mn(F )-module. Then

EndMn(F )(F
n) = {f ∈ EndF (F n) = Mn(F ) : f(αx) = αf(x),∀α ∈Mn(F ), x ∈ F n}

= {A ∈Mn(F ) : AB = BA,∀B ∈Mn(F )} = {λIn : λ ∈ F} ∼= F

Hence we find that EndMn(F )(F
n) is a division ring.

The converse does not hold:
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Consider Q as a Z-module. It is certainly not simple. Indeed it
contains Z as a proper submodule. However, EndZ(Q) = Q.

Indeed, let f be an endomorphism of the Z-module Q. Then, for any
n ∈ Z, f(n) = nf(1) and for n 6= 0,

f(1) = f(n
1

n
) = nf(

1

n
)

hence f( 1
n
) = 1

n
f(1). It follows that f(a) = af(1) for all a ∈ Q.

The map End(Q) −→ Q sending f to f(1) is an isomorphism.
Let’s look at a few more examples of Z-modules:
Every simple Z module is finite. Indeed, let M be an simple Z-

module. Let v ∈M be a non-zero vector. The map φ : n 7→ nv from Z

to M is a non-zero morphism of modules. As M is simple, φ surjective.
The kernel of φ is a proper submodule of Z (it is not zero as otherwise
Z ∼= M and Z is not semi-simple, it is not Z because φ is non-zero).
The kernel is nZ and M is isomorphic to Z/nZ hence finite.

We claim that n has to be a prime number. If not, then two cases
occur.

Case 1:
n = n1n2 with n1, n1 coprime and Z/nZ = Z/n1Z × Z/n2Z hence

not simple.
Case 2:
n is a power of a prime number, say n = pn with n > 1. Then Z/pnZ

contains a non-trivial submodule Z/pZ hence is not simple.
The only simple Z-modules are the Z/pZ where p is a prime

Ex. Show that simple modules over F [x] are the F [x]/I where I is
a prime ideal.

Definition 0.6. A module is called semisimple if it is a direct sum of
simple modules.

Consider the example of Mn(F ) viewed as a left module. This mod-
ule is not simple. Indeed, we have seen that it contains submodules Cj

(column) vectors. The modules Cj are simple and quite clearly

Mn(F ) = ⊕n
j=1Cj

The module Mn(F ) is thus semi-simple. Recall from what preceeded
that the ring Mn(F ) is simple.

We now prove the following characterisation of semisimple modules
(at least the finitely generated ones):

Proposition 0.6. Let M be a finitely generated R-module. The fol-
lowing properties are equivalent.



SEMISIMPLE MODULES AND ALGEBRAS. 7

(1) Any submodule of M is a direct summand i.e, if W ⊂ M is
a submodule, then there exists a submodule W ′ such that =
W ⊕W ′.

(2) M is a finite sum of simple submodules.

Proof. Let us first show that (2) implies (1).
We suppose that M is semisimple. By definition,

M = ⊕i∈IMi

where I is a certain finite set of integers and Mi are simple submodules
of M .

Let W be a submodule of M . We can assume that W 6= M and that
W 6= 0 as otherwise there is nothing to prove.

Let J be the subset of I consisting of all is such that W ∩Mi = {0}.
Notice that the complement of J in I consists of all is such that

Mi ⊂ W . Indeed, if i /∈ J , then W ∩Mi is a non-zero submodule of Mi

which is simple hence W ∩Mi = Mi i.e. Mi ⊂ W .
The sum W ∗ = W + ⊕i∈JMi is direct by definition of J .
Let us show that W ∗ = M which is equivalent to showing that

Mi ⊂ W ∗ for any i ∈ I.
Let i ∈ I.
If Mi ∩W = {0} then i ∈ J and Mi ⊂ W ∗. If Mi ∩W 6= {0} then,

because Mi is simple, W ∩Mi = Mi i.e. Mi ⊂ W . Again Mi ⊂ W ∗.
Hence W ∗ = M . We take W ′ = ⊕i∈JMi. This finishes the proof of

(2) implies (1).

Remark 0.7. Notice that as a subproduct of this proof we proved that
a submodule and a quotient of a semisimple module is semisimple.

Indeed, let M be a semisimple module, M = ⊕i∈IMi. Let W be a
submodule and J ⊂ I as in the proof. We showed that

M = W ⊕W ′

where W = ⊕i:Mi⊂WMi hence W is semisimple. We also showed that
W ′ = ⊕i:Mi∩W={0}Mi. As M/W ∼= W ′, it is semisimple.

Let us do (1) implies (2). We suppose that every submodule of M
admits a direct summand.

We need an intermediate lemma:

Lemma 0.8. Every non-zero module satisfying the assumtion (1) con-
tains a simple module.

Proof. Before giving a proof, let us introduce the following definitions.
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Definition 0.7. A submodule N ⊂ M is called maximal if for any
submodule K ⊂ M such that N ⊂ K ⊂ M , then either K = N or
K = M .

In particular a (left) ideal in R is called maximal if and only if A 6= R
and for any left ideal B with A ⊂ B ⊂ R, either A = B or B = R.

Clearly a submodule N ⊂M is maximal if and only if M/N is simple.

We use without proof the following proposition:

Proposition 0.9. Any proper submodule of a finitely generated module
is contained in a maximal submodule.

Let V be a non-zero R-module satisfying the assumption (1). Let
v ∈ V a non-zero element. Consider the submodule Rv and a homo-
morphism φ : R −→ Rv. The kernel L of φ is a left ideal in R, different
from R. It is contained in a maximal ideal M 6= R. Then M/L is a
maximal submodule of R/L. It follows that Mv is a maximal submod-
ule of Rv (recall that R/ ker(φ) = R/L is isomorphic to im(φ) = Rv),
hence M/L is isomorphic to Mv. As V satisfies the assumption (1),
we have

V = Mv ⊕M ′

for some submodule M ′. When we intersect with Rv, we get

Rv = Mv ⊕ (M ′ ∩Rv)

(simply write that any element of x ∈ Rv decomposes uniquely as
x = αv + x′ with x′ ∈ M ′). The module M ′ ∩ Rv is simple as it is
isomorphic to Rv/Mv which is simple because Mv is maximal. �

Now, let M0 ⊂ M be the sum of all simple submodules of M . If
M0 6= M , then we write

M = M0 ⊕W

with W 6= {0}. As W is not zero, there exists a simple submodule of
W , thus contradicting the definition of M0. Therefore W = {0} and
M is the sum of all its disctinct simple submodules Mi. This sum is
automatically direct, as for i 6= j, Mi ∩Mj is either {0} or Mi. In the
latter case, Mi = Mj contradicting the fact that the Mi are distinct.
We obtain that M is direct sum of simple submodules. The sum is
finite because M is finitely generated. �

This proposition for example shows that Z is not semisimple as a
Z-module. We have seen that the only simple Z-modules are the Z/pZ
with p prime and Z is clearly not a sum of a finite number of such
modules: Z is torsion free while such a sum certainly isn’t.
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By Chinese remainder theorem, semisimple Z-modules are precisely
the Z/nZ where n is a square-free integer.

If F is a field, then F n is certainly semisimple as an F -module. In
fact any semisimple F -module is isomorphic to F n for some n i.e. it is
a finite dimensional vector space.

We now define the notion of an Algebra over a field.

Definition 0.8. Let F be a field. An algebra A over F is a ring which
has a structure of a F -vector space which is compatible with the ring
multiplication in the following sense:

(λa)b = λ(ab) = a(λb)

for all λ ∈ F and a, b ∈ A.
An algebra is finite dimensional (one also says of finite rank) if its

dimension as F -vector space is finite.
A homomorphism of algebras is naturally a ring homomorphism which

is also a linear transformation.

For example : F , F [X], F [X]/I (I ideal), Mn(F ) are all algebras...
The algebra F [X] is not finite dimensional.
In what follows we will implicitly assume that our algebras

are finite dimensional.

The quaternion algebra is an algebra over the reals, however it is not
an algebra over the complexes (recall that zj = jz !).

As an algebra is a ring, we can look at modules over it, which will
be automatically endowed with the structure of an F -vector space. In
particular :

Definition 0.9. An algebra A is called semisimple if all non-zero A-
modules are semisimple.

And we immediately prove the following result which characterises
semisimple algebras:

Proposition 0.10. An algebra A is semisimple if and only if the A-
module A is semisimple.

Proof. Suppose A to be semisimple as A-module. Let M be an A-
module and choose a set {m1, . . . ,mr} of generators for M . Let Ar be
the direct sum of r copies of A. This is clearly a semisimple A-module
(write A = ⊕Ai with Ai simple A-modules, then Ar = ⊕Ar

i ...). Define
a map

φ : Ar −→M
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Clearly φ is a surjective morphism hence M is isomorphic to a quotient
of a semisimple module Ar. From the previous proposition, it follows
that M is semi-simple.

The converse is trivial. �

Proposition 0.11. Let A be a semisimple algebra. Suppose that, as
an A-module, A is a sum

A = A1 ⊕ · · · ⊕ Ar

of simple A-modules Ai.
Then any simple A-module is isomorphic to one of the Ai.

Proof. Let S be a simple A-module and fix s ∈ S, s 6= 0. Then As is a
submodule of S and consider the epimorphism

φ : A −→ As

sending a to as. As S is simple, we have As = S. Let φi be the
restriction of φ to Ai. If φi = 0 for all i, then φ = 0 which is not the
case, hence there exists an i such that φi 6= 0. By Shur’s lemma, φi

is an isomorphism. �

Proposition 0.12. Suppose that A is semisimple algebra and let Ai be
the collection of simple distinct A-submodules of A.

Let M be an A-module (automatically semisimple). There is a unique
set of integers ni such that

M = An1

1 ⊕ · · · ⊕ Anr

r

Only the uniqueness needs proving. This will follow from the defini-
tion and a theorem stated below.

Definition 0.10. Let M be a module over a ring R. A composition
series of M is a finite sequence of submodules Ni ⊂M such that

M = Nr ⊃ Nr−1 ⊃ · · · ⊃ N0 = {0}

and
Ni/Ni−1

is a simple module.

A module may or may not have a composition series. For example,
Z viewed as a module over itself does not have a composition series.
Indeed, if there was one, then N1 = nZ for some integer n 6= 0, but
then N1/N0 = nZ which is not a simple Z-module (we have seen that
simple Z-modules are finite).

A semisimple module always has a composition series: if M = M1 ⊕
· · · · · ·Mr with Mis simple, one can set Ni = N1 ⊕ · · · ⊕Mi.
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Two somposition series Ni (i = 0, . . . , r) and N ′
i (i = 0, . . . , s) are

equivalent if r = s and after permutation Ni/Ni−1
∼= N ′

i/N
′
i−1.

We use the following

Theorem 0.13 (Jordan-Holder). Let M be a finitely generated R mod-
ule having a composition series. Any two composition series are equiv-
alent.

The uniqueness of the nis follows immediately from this theorem.

Recall that our aim is to classify semisimple algebras. We now start
working towards it.

Let D be a finite-dimensional F -algebra. For any n, let Mn(D) be set
of n× n-matrices with entries in D. This is an F -algebra of dimension
n2 dimF (D).

We say that D is a division algebra if D is a division ring - any
non-zero element has a multiplicative inverse. For example any field is
a division algebra, H is a division algebra...

The algebra Mn(F ) is not a division algebra if n > 1, a product
D1 ×D2 of division algebras is not a division algebra (it contains non-
zero elements such as (a, 0)).

The following theorem of Frobenius classifies all finite dimensional
division algebras over the reals:

Theorem 0.14. The only finite dimensional division algebras over R

are R, C and H.

They have dimensions one, two and four respectively.
The aim of this part of the course is to show that any semisimple

algebra is isomorphic to a direct sum of algebras of the form Mn(D)
where D is a division algebra.

We define the notion of opposite algebra. Let B be an algebra. The
algebra Bop is the set B with the same addition and scalar multiplica-
tion but with multiplication befined as

a ∗ b = ba

The following properties are obvious:

(1) Bopop = B
(2) B is a division algebra if and only if Bop is
(3) (B1 ⊕B2)

op = Bop
1 ⊕Bop

2

We also have:

Lemma 0.15. Let B an algebra. Then Mn(B)op ∼= Mn(Bop) for any
n.
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Proof. Define

ψ : Mn(B)op −→Mn(Bop)

by setting ψ(X) = X t. Obviously it is bijective. It is an exercise in
matrix multiplication to show that

ψ(X ∗ Y ) = ψ(X)ψ(Y )

�

We prove the following:

Lemma 0.16. Let B an algebra. Then

Bop ∼= EndB(B)

Proof. Let φ ∈ EndB(B) and let a = φ(1). Then for any b in B, we
have

φ(b) = bφ(1) = ba

Hence φ = ρa, endomorphism given by right multiplication by a.
Therefore

EndB(B) = {ρa : a ∈ B}

hence ther is a bijection between B and EndB(B). We need to show
that

ρaρb = ρa∗b

Let a, b, x ∈ B. We have

(ρaρb)(x) = xba = ρba(x) = ρa∗b(x)

�

Lemma 0.17. If S is a simple A-module, then for any n, we have

EndA(Sn) = Mn(End(S))

Proof. Regard elements of Sn as column vectors. Let A = (aij) ∈
Mn(End(S)) and define Γ(A) : Sn −→ Sn by

Γ(A)





s1
...
sn



 =





a11 . . . a1n

...
. . .

...
a1n . . . ann









s1
...
sn





One sees that
Γ(A)(as+ t) = aΓ(A)s+ Γ(A)t

(because aij are A-module homomorphisms). It follows that Γ(A) ∈
End(Sn).

Ex. Check that Γ: Mn(End(S)) −→ End(Sn) is an algebra monomor-
phism.
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Conversely, let ψ ∈ End(Sn). Define ψij ∈ End(S) by

ψ























0
...
0
s
0
...
0























=























ψ1j(s)
ψ2j(s)

...
ψjj(s)

...
ψn−1,j(s)
ψn,j(s)























The matrix Ψ = (ψij) ∈ Mn(End(S)) is such that Γ(Ψ) = ψ which
shows that Γ is surjective. �

We also have the following:

Proposition 0.18. Let U1 and U2 be two submodules of an R-module
such that U1 ∩ U2 = {0}. Then

End(U1 ⊕ U2) = End(U1) ⊕ End(U2)

Proof. Exercise �

Next we prove the following lemma which is of independent interest:

Lemma 0.19. Let D be a finite dimensional division algebra over an
algebraically closed field F . Then

D ∼= F

Proof. Let a ∈ D, a 6= 0. As D is finite dimensional, the powers
1, a, . . . , ak, . . . are linearle dependent over F . Therefore there is a
relation:

an + c1a
n−1 + · · · + c0 = 0

where we choose n to be the smallest possible.
Consider f(x) = xn + c1x

n−1 + · · · c0. As F is algebraically closed, f
has a root λ in F i.e

f(x) = (x− λ)g(x)

with deg(g) = deg(f) − 1. Evaluating at a we get

(a− λ)g(a) = 0

As f was chosen to be of smallest degree, g(a) 6= 0 hence is invertible
(D is a division algebra). It follows that a = λ ∈ F , hence D = F . �

The immediate consequence of this lemma and of Shur’s lemma is
the following:
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Lemma 0.20 (Burnside). Suppose F is algebraically closed and let S
be a simple A-module. Then

EndA(S) = F

One can also give a direct proof of the last theorem as follows: Let
φ ∈ EndA(S) and view it as an F -linear map of the F -vector space
S. Furthermore, φ is invertible (by Shur). Since F is algebraically
closed, φ has an eigenvalue λ and we get φ − λI ∈ EndA(S) which is
not invertible. By Shur, it is zero and hence φ = λI. The map φ 7→ λ
is an isomorphism EndA(S) ∼= F .

We now prove the main theorem.

Theorem 0.21 (Artin-Wedderburn). An algebra A over a field F is
semisimple if and only if A is isomorphic to a direct sum of matrix
algebras over division algebras i.e. there exist integers ni and division
algebras Di such that

A ∼= Mn1
(D1) ⊕ · · · ⊕Mnr

(Dr)

Proof. The converse is already established.
Suppose that A is semisimple. Let Ais be the non pairwise isomor-

phic simple submodules of A.
Write A = U1 ⊕ · · · ⊕ Ur where Ui = Ani

i for some ni ≥ 1.
We have

Aop ∼= EndA(A) ∼= EndA(U1) ⊕ · ⊕ EndA(Ur)
∼= End(An1

1 ) ⊕ · · · ⊕ EndA(Ani

r ))
∼= Mn1

(End(A1)) ⊕ · · · ⊕Mnr
(End(Ar))

By taking opposites, we find that

Aop ∼= Mn1
(End(A1)

op) ⊕ · · · ⊕Mnr
(End(Ar)

op)

By Shur all the Di = End(Ai)s are division algebras.
By taking the opposite we find:

A = Aopop ∼= Mn1
(D1) ⊕ · · · ⊕Mnr

(Dr)

This finishes the proof. �

The following corollary will be relevant to representation theory:

Corollary 0.22. Suppose that F is algebraically closed. Then any
semisimple algebra is isomorphic to a direct sum of matrix algebras
over F .


