GROUP ALGEBRAS.

ANDREI YAFAEV

We will associate a certain algebra to a finite group and prove that it is semisimple. Then we will apply Wedderburn's theory to its study.

Definition 0.1. Let G be a finite group. We define $F[G]$ as a set of formal sums

$$
u=\sum_{g \in G} \lambda_{g} g, \lambda_{g} \in F
$$

endowed with two operations: addition and multiplication defined as follows.

$$
\sum_{g \in G} \lambda_{g} g+\sum_{g \in G} \mu_{g} g=\sum_{g \in G}\left(\lambda_{g}+\mu_{g}\right) g
$$

and

$$
\sum_{g \in G} \lambda_{g} g \times \sum_{g \in G} \mu_{h} h=\sum_{g \in G, h \in G}\left(\lambda_{h} \mu_{h^{-1} g}\right) g
$$

Note that the multiplication is induced by multiplication in G, F and linearity.

The following proposition is left to the reader.
Proposition 0.1. The set $(F[G],+, \times)$ is a ring and is an F-vector space of dimension $|G|$ with scalar multiplication compatible with group operation. Hence $F[G]$ is an F-algebra.

The algebra $F[G]$ is non-commutative unless the group G is comutative.

It is clear that the basis elements (elements of G) are invertible in $F[G]$.

Lemma 0.2. The algebra $F[G]$ is a not a division algebra.
Proof. It is easy to find zero divisors. Let $g \in G$ and let m be the order of G (the group G is finite, every element has finite order). Then

$$
(1-g)\left(1+g+g^{2}+\cdots+g^{m-1}\right)=0
$$

In this course we will study $F[G]$-modules, modules over the algebra $F[G]$. An important example of a $F[G]$-module is $F[G]$ itself viewed as a $F[G]$-module. We leave the verifications to the reader. This module is called a regular $F[G]$-module and the associated representation a regular representation.

Next we introduce the notion of $F[G]$-homomorphism between $F[G]$ modules.

Definition 0.2. Let V and W be two $F[G]$-modules. A function $\phi: V \longrightarrow$ W is called a $F[G]$-homomorphism if it is a homomorphism from V to W viewed as modules over $F[G]$.

That means that ϕ is F-linear and satisfies

$$
\phi(g v)=g \phi(v)
$$

for all $g \in G$ and $v \in V$.
We obviously have the following.
Proposition 0.3. Let $\phi: V \longrightarrow W$ be a $F[G]$-homomorphism. Then $\operatorname{ker}(\phi)$ and $\operatorname{im}(\phi)$ are $F[G]$-submodules of V and W respectively.
Definition 0.3. Let G be a finite group, F a field and V a finite dimensional vector space over F. A representation ρ of G on V is a group homomorphism

$$
\rho: G \longrightarrow \mathrm{GL}(V)
$$

A representation is called faithful if $\operatorname{ker}(\rho)=\{1\}$.
A representation is called irreducible if the only subspaces W of V such that $\rho(G) W \subset W$ are $W=\{0\}$ and $W=V$.

The following theorem telles us that a representation of G and an $F[G]$-module are same things.

Theorem 0.4. Let G be a finite group and F a field. There is a one-to-one correspondence between representations of G over F and finitely generated left $F[G]$-modules.

Proof. Let V be a (finitely generated) $F[G]$-module. Then V is a finite dimensional vectore space. Let g be in G, then, by axioms satisfied by a module, the action of g on V defines an invertible linear map which gives an element $\rho(g)$ of GL (V). It is trivial to check that $\rho: G \longrightarrow$ $\mathrm{GL}(V)$ is a group homomorphism i.e. a representation $G \longrightarrow \mathrm{GL}(V)$.

Let $\rho: G \longrightarrow \mathrm{GL}(V)$ be a representation. Let $x=\sum_{g \in G} \lambda_{g} g$ be an element of $F[G]$ and let $v \in V$. Define

$$
x v=\sum_{g \in G} \lambda_{g} \rho(g) v
$$

It is easy to check that this defines a structure of an $F[G]$-module on V.

By definition, a morphism between two representation is a morphism of the corresponding $F[G]$-modules. Two representations are isomorphic (or equivalent) if the corresponding $F[G]$-modules are isomorphic.

Given an $F[G]$-module V and a basis B of V as F-vector space, for $g \in G$, we will denote by $[g]_{B}$ the matrix of the linear transformation defined by g with respect to the basis B.

For example :
Let

$$
D_{8}=\left\{a, b: a^{4}=b^{2}=1, b^{-1} a b=a^{-1}\right\}
$$

and define a representation by

$$
\rho(a)=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \text { and } \rho(b)=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Choose B to be the canonical basis $v_{1}=\binom{1}{0}$ and $v_{2}=\binom{0}{1}$ of $V=F^{2}$. We have:

$$
\begin{array}{cc}
a v_{1}=-v_{2} & a v_{2}=v_{1} \\
b v_{1}=v_{1} & b v_{2}=-v_{2}
\end{array}
$$

This completely determines the structure of V as a $F\left[D_{8}\right]$-module. Conversely, by taking the matrices $[a]_{B}$ and $[b]_{B}$, we recover our representation ρ.

Another example :
Let G be the group S_{n}, group of permutations of the set $\{1, \ldots, n\}$. Let V be a vector space of dimension n over F (the n here is the same as the one in S_{n}). Let $\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of V. We define

$$
g v_{i}=v_{g(i)}
$$

The reader will verify that the conditions of the above proposition are verified and hence we construct a $F[G]$-module called the permutation module.

Let $n=4$ and let $B=\left\{v_{1}, \ldots, v_{n}\right\}$ be a basis of F^{4}. Let g be the prmutation (1,2). Then

$$
g v_{1}=v_{2}, g v_{2}=v_{1}, g v_{3}=v_{3}, g v_{4}=v_{4}
$$

The matrix $[g]_{B}$ is

$$
\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Lemma 0.5. A representation $\rho: G \longrightarrow \mathrm{GL}_{n}(F)$ is irreducible (or simple) if and only if the corresponding $F[G]$-module is simple.

Proof. A non-trivial invariant subspace $W \subset V$ is a non-trivial $F[G]$ submodule, and conversely.

Note that ρ being irreducible means that the only $\rho(G)$-invariant subspaces of V are $\{0\}$ and V itself.

If a representation is reducible i.e. there is a $F[G]$-submodule W of V, then we can choose a basis B of V (choose a basis B_{1} of B and complete it to a basis of B) in such a way that the matrix $[g]_{B}$ for all g is of the form

$$
\left(\begin{array}{cc}
X_{g} & Y_{g} \\
0 & Z_{g}
\end{array}\right)
$$

where X_{g} is a $\operatorname{dim} W \times \operatorname{dim} W$ matrix. Clearly, the functions $g \mapsto X_{g}$ and $g \mapsto Z_{g}$ are representations of G.

Let's look at an example. Take $G=C_{3}=\left\{a: a^{3}=1\right\}$ and consider the $F[G]$-module $V(\operatorname{dim} V=3)$ such that

$$
a v_{1}=v_{2}, a v_{2}=v_{3}, a v_{3}=v_{1}
$$

(Easy exercise : check that this indeed defines an $F[G]$-module)
This is a reducible $F[G]$-module. Indeed, let $W=F w$ with $w=$ $v_{1}+v_{2}+v_{3}$. Clearly this is a $F[G]$-submodule. Consider the basis $B=\left\{w, v_{2}, v_{3}\right\}$ of V. Then

$$
\left[I_{3}\right]_{B}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)[a]_{B}=\left(\begin{array}{ccc}
1 & 0 & 1 \\
0 & 0 & -1 \\
0 & 1 & -1
\end{array}\right)
$$

(For the last matrix, note that: $a w=w, a v_{2}=v_{3}, a v_{3}=v_{1}=w-v_{2}-$ $\left.v_{3}\right)$

Given two $F[G]$-modules, a homomorphism $\phi: V \longrightarrow W$ of $F[G]$ modules is what you think it is. It has a kernel and an image that are $F[G]$-submonules of V and W.

Example.
Let G be the group S_{n} of permutations. Let V be the permutation module for S_{n} and $\left\{v_{1}, \ldots, v_{n}\right\}$ a basis for V. Let $w=\sum_{i} v_{i}$ and $W=F w$. This is a $F[G]$-module. Define a homomorphism

$$
\phi: \sum_{i} \lambda_{i} v_{i} \mapsto\left(\sum_{i} \lambda_{i}\right) w
$$

This is a $F[G]$-homomorphism (check !). Clearly,

$$
\operatorname{ker}(\phi)=\left\{\sum \lambda_{i} v_{i}, \sum \lambda_{i}=0\right\} \text { and } \operatorname{im}(\phi)=W
$$

We now get to the first very important result of this chapter. It says that $F[G]$-modules are semisimple.

Theorem 0.6 (Maschke's theorem). Let G be a finite group and F a field such that Char F does not divide $|G|$ (ex. Char $F=0$). Let V be a $F[G]$-module and U an $F[G]$-submodule. Then there is an $F[G]$ submodule W of V such that

$$
V=U \oplus W
$$

In other words, $F[G]$ is a semisimple algebra.
Proof. Choose any subspace W_{0} of V such that $V=U \oplus W_{0}$. For any $v=u+w$, define $\pi: V \longrightarrow V$ by $\pi(v)=u$ (i.e. π is a projection onto $U)$. We will modify π into an $F[G]$-homomorphism. Define

$$
\phi(v)=\frac{1}{|G|} \sum_{g \in G} g \pi g^{-1}(v)
$$

This clearly is an F-linear morphism $V \longrightarrow V$. Furthermore, $\operatorname{im}(\phi) \subset$ U (notice that $\pi\left(g^{-1} v\right) \in U$ and as U is an $F[G]$-module, we have $\left.g \pi\left(g^{-1} v\right) \in U\right)$.

Claim 1. : ϕ is a $F[G]$-homomorphism.
Let $x \in G$, we need to show that $\pi(x v)=x \pi(v)$. Let, for $g \in G$, $h:=x^{-1} g$ (hence $h^{-1}=g^{-1} x$). Then

$$
\phi(x v)=\frac{1}{|G|} \sum_{h \in G} x\left(h \pi h^{-1}\right)(v)=x \frac{1}{|G|} \sum_{h \in G}\left(h \pi h^{-1}\right)(v)=x \phi(v)
$$

This proves the claim.
Claim 2. : $\phi^{2}=\phi$.
For $u \in U$ and $g \in G$, we have $g u \in U$, therefore $\phi(g u)=g u$. Now

$$
\phi(u)=\frac{1}{|G|} \sum\left(g \pi g^{-1}\right) u=\frac{1}{|G|} \sum\left(g \pi\left(g^{-1} u\right)=\frac{1}{|G|} \sum g g^{-1} u=\frac{1}{|G|} \sum u=u\right.
$$

Let $v \in V$, then $\phi(u) \in U$ and it follows that $\phi^{2}(v)=\phi(v)$, this proves the claim. We let $W:=\operatorname{ker}(\phi)$. Then, as ϕ is a $F[G]$-homomorphism, W is a $F[G]$-module. Now, the minimal polynomial of ϕ is $x^{2}-x=$ $x(x-1)$. Hence

$$
V=\operatorname{ker}(\phi) \oplus \operatorname{ker}(\phi-I)=W \oplus U
$$

This finishes the proof.

Note that without the assumption that $\operatorname{Char}(F)$ does not divide $|G|$, the conslusion of Mashke's theorem is wrong. For example let $G=C_{p}=\left\{a: a^{p}=1\right\}$ over $F=\mathbb{F}_{p}$. Then the function

$$
a^{j} \mapsto\left(\begin{array}{ll}
1 & 0 \\
j & 1
\end{array}\right)
$$

for $j=0, \ldots, p-1$ is a representation of G of dimension 2. We have

$$
a^{j} v_{1}=v_{1} a^{j} v_{2}=j v_{1}+v_{2}
$$

Then $U=\operatorname{Span}\left(v_{1}\right)$ is a $F[G]$-submodule of V. But there is no $F[G]$-submodule W such that $V=U \oplus V$ as (easy) U is the only 1-dimensional $F[G]$-submodule of V.

Similarly, the conclusion of Maschke's theorem fails for infinite groups. Take $G=\mathbb{Z}$ and the representation

$$
n \mapsto\left(\begin{array}{ll}
1 & 0 \\
n & 1
\end{array}\right)
$$

The proof of Maschke's theorem gives a procedure to find the complementary subspace. Let $G=S_{3}$ and $V=\left\{e_{1}, e_{2}, e_{3}\right\}$ be the permutation module. Clearly, the submodule $U=\operatorname{Span}\left(v_{1}+v_{2}+v_{3}\right)$ is an $F[G]$-submodule. Let $W_{0}=\operatorname{Span}\left(v_{1}, v_{2}\right)$.

Then $V=U \oplus W_{0}$ as \mathbb{C}-vector spaces. The projection ϕ onto U is given by

$$
\phi\left(v_{1}\right)=0, \phi\left(v_{2}\right)=0, \phi\left(v_{3}\right)=v_{1}+v_{2}+v_{3}
$$

The $F[G]$-homomorphism as in the proof of Maschke's theorem is given by

$$
\Phi\left(v_{i}\right)=\frac{1}{3}\left(v_{1}+v_{2}+v_{3}\right)
$$

Clearly $\operatorname{ker}(\Phi)=\operatorname{Span}\left(v_{1}-v_{2}, v_{2}-v_{3}\right)$. The $F[G]$-submodule is then

$$
W=\operatorname{Span}\left(v_{1}-v_{2}, v_{2}-v_{3}\right)
$$

This is the $F[G]$-submodule such that $V=U \oplus W$. Actually, you may notice that is submodule is

$$
W=\left\{\sum \lambda_{i} v_{i}: \sum \lambda_{i}=0\right\}
$$

By applying a theorem from the previous chapter.
Corollary 0.7. Let G be a finite group and V a $F[G]$ module where $F=\mathbb{R}$ or \mathbb{C}. There exist simple $F[G]$-modules U_{1}, \ldots, U_{r} such that

$$
V=U_{1} \oplus \cdots \oplus U_{r}
$$

In other words, $F[G]$ modules are semisimple.
Another corollary:

Corollary 0.8. Let V be an $F[G]$-module, Char F does not divide $|G|$. Let U be an $F[G]$ submodule of V. There is a surjective $F[G]$ homomorphism $V \longrightarrow U$.
Proof. By Mascke's theorem there is an $F[G]$-submodule W such that $V=U \oplus W$. Consider $\pi: u+w \mapsto u$.

We can now state Shur's lemma for $F[G]$-modules:

Theorem 0.9 (Schur's lemma). Suppose that F is algebraically

 closed.Let V and W be simple $F[G]$-modules.
(1) If $\phi: V \longrightarrow W$ is a $F[G]$-homomorpism, then either ϕ is a $F[G]$-isomorphism or $\phi(v)=0$ for all $v \in V$.
(2) If $\phi: V \longrightarrow W$ is a $F[G]$-isomorpism, then ϕ is a scalar multiple of the identity endomorphim I_{V}.

This gives a characterisation of simple $F[G]$-modules and it is also a partial converse to Shur's lemma.

Proposition 0.10. Suppose Char F does not divide $|G|$ Let V be a nonzero $F[G]$-module and suppose that every $F[G]$-homomorphism from V to V is a scalar multiple of I_{V}. Then V is simple.

Proof. Suppose that V is reducible, then by Maschke's theorem, we have

$$
V=U \oplus W
$$

where U and W are $F[G]$-submodules. The projection onto U is a $F[G]$-homomorphism which is not a scalar multiple of I_{V} (it has a non-trivial kernel !). This contradicts the assumtion.

We now apply Shur's lemma to classifying representations of abelian groups.

In what follows, the field F is \mathbb{C}.
Let G be a finite abelian group and V a simple $\mathbb{C}[G]$-module. As G is abelian, we have

$$
x g v=g(x v), x, g \in G
$$

Therefore, $v \mapsto x v$ is a $\mathbb{C}[G]$-homomorphism $V \longrightarrow V$. As V is irreducible, Shur's lemma imples that there exists $\lambda_{x} \in \mathbb{C}$ such that $x v=\lambda_{x} v$ for all V. In particular, this implies that every subspace of V is a $\mathbb{C}[G]$-module. The fact that V is simple implies that $\operatorname{dim}(V)=1$. We have proved the following:

Proposition 0.11. If G is a finite abelian group, then every simple $\mathbb{C}[G]$-module is of dimension one.

The basic structure theorem for finite abelian groups is the following:
Theorem 0.12 (Structure of finite abelian groups). Every finite abelian group G is a direct product of cyclic groups.

Let

$$
G=C_{n_{1}} \times \cdots \times C_{n_{r}}
$$

and let c_{i} be a generator for $C_{n_{i}}$ and we write

$$
g_{i}=\left(1, \ldots, 1, c_{i}, 1, \ldots, 1\right)
$$

Then

$$
G=<g_{1}, \ldots, g_{r}>, g^{n_{i}}=1, g_{i} g_{j}=g_{j} g_{i}
$$

Let $\rho: G \longrightarrow \mathrm{GL}_{n}(\mathbb{C})$ be an irreducible representation of G. We know that $n=1$, hence $\mathrm{GL}_{n}(\mathbb{C})=\mathbb{C}^{*}$. There exist $\lambda_{i} \in \mathbb{C}$ such that

$$
\rho\left(g_{i}\right)=\lambda_{i}
$$

The fact that g_{i} has order n_{i} implies that $\lambda_{i}^{n_{i}}=1$.
This completely determines ρ. Indeed, let $g=g_{1}^{i_{1}} \cdots g_{r}^{n_{r}}$, we get

$$
\rho(g)=\lambda_{1}^{i_{1}} \cdots \lambda_{r}^{i_{r}}
$$

As ρ is completely determined by the λ_{i}, we write

$$
\rho=\rho_{\lambda_{1}, \ldots, \lambda_{r}}
$$

We have shown:
Theorem 0.13. Let $G=C_{n_{1}} \times \cdots \times C_{n_{r}}$. The representations $\rho_{\lambda_{1}, \ldots, \lambda_{r}}$ constructed above are irreducicible and have degree one. There are exactly $|G|$ of these representations.

Let us look at a few examples. Let $G=C_{n}=\left\{a: a^{n}=1\right\}$ and let $\zeta_{n}=e^{2 \pi i / n}$. The n irreducible representations of G are the

$$
\rho_{\zeta_{n}^{i}}\left(a^{k}\right)=\zeta_{n}^{k}
$$

where $0 \leq k \leq n-1$.
Let us classify all irreducible representations of $G=C_{2} \times C_{2}=<$ $a_{1}, a_{2}>$. There are four of them, call them $V_{1}, V_{2}, V_{3}, V_{4}$ where V_{i} is a one dimensional vector space with basis v_{i}. We have

$$
\begin{array}{cc}
a_{1} v_{1}=v_{1} & a_{2} v_{1}=v_{1} \\
a_{1} v_{2}=v_{2} & a_{2} v_{2}=-v_{2} \\
a_{1} v_{3}=-v_{3} & a_{2} v_{3}=v_{3} \\
a_{1} v_{4}=-v_{4} & a_{2} v_{4}=-v_{4}
\end{array}
$$

Let us now turn to not necessarily irreducible representations. Let $G=\langle g\rangle$ be a cyclic group of order n and V a $\mathbb{C}[G]$-module. Then V decomposes as

$$
V=U_{1} \oplus \cdots \oplus U_{r}
$$

into a direct sum of irreducible $\mathbb{C}[G]$-modules. We know that every U_{i} has dimension one and we let u_{i} be a vector spanning U_{i}. As before we let $\zeta_{n}=e^{2 \pi i / n}$. Then for each i there exists an integer m_{i} such that

$$
g u_{i}=\zeta_{n}^{m_{i}} u_{i}
$$

Let $B=\left\{u_{1}, \ldots, u_{r}\right\}$ be the basis of V consisting of the u_{i}. Then the matrix $[g]_{B}$ is diagonal with coefficients $\zeta_{n}^{m_{i}}$.

As an exercise, the reader will classify representations of arbitrary finite abelian groups (i.e products of cyclic groups).

The statement that all irreducible representations of abelian groups have degree one has a converse.

Theorem 0.14. Let G be a finite group such that all irreducible representations of G are of degree one. Then G is abelian.

Proof. We can write

$$
\mathbb{C}[G]=U_{1} \oplus \cdots \oplus U_{n}
$$

where each U_{i} is simple and hence is of degree one by assumption. Let u_{i} be a generator of U_{i}, then $\left\{u_{1}, \ldots, u_{n}\right\}$ is a basis of $\mathbb{C}[G]$ as a \mathbb{C}-vector space.

Let g be in $\mathbb{C}[G]$, then the matrix of the action of g on $\mathbb{C}[G]$ in this basis is diagonal (because $U_{i} \mathrm{~s}$ are $\mathbb{C}[G]$-modules !). The regular representation of G (action of G on $\mathbb{C}[G]$ given by multiplication in G) is faithful.

Indeed, suppose $g \sum\left(\lambda_{h} h\right)=\sum \lambda_{h} h$ for all $\sum \lambda_{h} h \in \mathbb{C}[G]$. Then, in particular $g \cdot 1=1$ hence $g=1$.

It follows that the group G is realised as a group of diagonal matrices. Diagonal matrices commute, hence G is abelian.

1. $\mathbb{C}[G]$ AS A MODULE OVER ITSELF.

In this section we study the structure of $\mathbb{C}[G]$ viewed as a module over itself. We know that $\mathbb{C}[G]$ decomposes as

$$
\mathbb{C}[G]=U_{1} \oplus \cdots \oplus U_{r}
$$

where the U_{i} s are irreducible $\mathbb{C}[G]$-submodules.
As by Mashke's theorem $\mathbb{C}[G]$ is a semisimple algebra, $U_{i} \mathrm{~S}$ are the only simple $\mathbb{C}[G]$-modules.

Then we have seen that every irreducible $\mathbb{C}[G]$-module is isomorphic to one of the U_{i} s. In particular there are only finitely many of them.

Let's look at examples.
Take $G=C_{3}=\left\{a: a^{3}=1\right\}$ and let $\omega=e^{2 i \pi / 3}$. Define

$$
\begin{array}{r}
v_{0}=1+a+a^{2} \\
v_{1}=1+\omega^{2} a+\omega a^{2} \\
v_{3}=1+\omega a+\omega^{2} a^{2}
\end{array}
$$

Let $U_{i}=\operatorname{Span}\left(v_{i}\right)$. One checks that

$$
a v_{i}=\omega^{i} v_{i}
$$

and $U_{i} \mathrm{~S}$ are $\mathbb{C}[G]$-submodules. It is not hard to see that v_{1}, v_{2}, v_{3} form a basis of $\mathbb{C}[G]$ and hence

$$
\mathbb{C}[G]=U_{0} \oplus U_{1} \oplus U_{2}
$$

direct sum of irreducible $\mathbb{C}[G]$-modules.
Look at D_{6}. It contains $C_{3}=\langle a\rangle$. Define:

$$
\begin{array}{ll}
v_{0}=1+a+a^{2}, & w_{0}=v_{0} b \\
v_{1}=1+\omega^{2} a+\omega a^{2}, & w_{1}=v_{1} b \\
v_{3}=1+\omega a+\omega^{2} a^{2}, & w_{2}=v_{2} b
\end{array}
$$

As before, $\left\langle v_{i}\right\rangle$ are $\left.<a\right\rangle$-invariant and

$$
\begin{aligned}
& a v_{0}=v_{0}, \quad a w_{0}=v_{0} \\
& b v_{0}=w_{0}, b w_{0}=v_{0}
\end{aligned}
$$

It follows that $\operatorname{Span}\left(u_{0}, w_{0}\right)$ is a $\mathbb{C}[G]$ modules. It is not simple, indeed, it is the direct sum $U_{0} \oplus U_{1}$ where $U_{0}=\operatorname{Span}\left(u_{0}+w_{0}\right)$ and $U_{1}=\operatorname{Span}\left(u_{0}-w_{1}\right)$ and they are simple submodules.

Notice that the irreducible representation of degree one corresponding to U_{0} is the trivial one : sends a and b to 1 . The one corresponding to U_{1} sends a to 1 and b to -1 .

Next we get :

$$
\begin{array}{r}
a v_{1}=\omega w_{2}, a w_{2}=\omega^{2} w_{2} \\
b v_{1}=w_{2}, b w_{2}=v_{1}
\end{array}
$$

Therefore $U_{2}=\operatorname{Span}\left(v_{1}, w_{2}\right)$ is $\mathbb{C}[G]$-module. It is an easy exercise to show that it is irreducible.

The corresponding two-dimensional representation is

$$
a \mapsto\left(\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right)
$$

and

$$
b \mapsto\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Lastly

$$
\begin{array}{r}
a v_{2}=\omega^{2} w_{1}, a w_{1}=\omega w_{1} \\
b v_{2}=w_{1}, b w_{1}=v_{2}
\end{array}
$$

Hence $U_{3}=\operatorname{Span}\left(v_{2}, w_{1}\right)$ is a $\mathbb{C}[G]$-module and one shows that it is irreducible. In fact the morphism ϕ that sends $v_{1} \longrightarrow w_{1}$ and $w_{2} \longrightarrow$ v_{2} is $\mathbb{C}[G]$-isomorphism (you need to chack that $\phi(a v)=a \phi(v)$ and $\phi(b v)=b \phi(v)$ for all $v \in \mathbb{C}[G])$.

Therefore the representations U_{2} and U_{3} are isomorphic. We have

$$
\mathbb{C}[G]=U_{0} \oplus U_{1} \oplus U_{2} \oplus U_{3}
$$

with $\operatorname{dim} U_{0}=\operatorname{dim} U_{2}=1$ and corresponding representations are nonisomorphic. And $\operatorname{dim} U_{2} \cong \operatorname{dim} U_{3}=2$ and the corresponding representations are isomorphic.

We have completely classified all irreducible representations of $\mathbb{C}\left[D_{6}\right]$ and realised them explicitly as sumbmodules of $\mathbb{C}\left[D_{6}\right]$.
1.1. Wedderburn decomposition revisited. We now apply the results we proved for semisimple modules to the group algebra $\mathbb{C}[G]$. View $\mathbb{C}[G]$ as a module over itself (regular module). By Maschke's theorem, this module is semisimple. There exist r distinct simple modules S_{i} and integers n_{i} such that

$$
\mathbb{C}[G]=S_{1}^{n_{1}} \oplus \cdots \oplus S_{r}^{n_{r}}
$$

We have

$$
\mathbb{C}[G]^{o p}=\operatorname{End}_{\mathbb{C}[G]}(\mathbb{C}[G])=M_{n_{1}}\left(\operatorname{End}\left(S_{1}\right)\right) \oplus \cdots \oplus M_{n_{r}}\left(\operatorname{End}\left(S_{r}\right)\right)
$$

As S_{i} is simple and \mathbb{C} is algebraically closed, $\operatorname{End}\left(S_{i}\right)=\mathbb{C}$. By taking the opposite algebra, we get

$$
\mathbb{C}[G]=M_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{r}}(\mathbb{C})
$$

(note that $\mathbb{C}^{o p}=\mathbb{C}$ because \mathbb{C} is commutative.)
Each S_{i} becomes a $M_{n_{i}}(\mathbb{C})$-module. Indeed, S_{i} is a $\mathbb{C}[G]=M_{n_{1}}(\mathbb{C}) \oplus$ $\cdots \oplus M_{n_{r}}(\mathbb{C})$-module and $M_{n_{i}}(\mathbb{C})$ is a subalgebra of $\mathbb{C}[G]$. As a $M_{n_{i}}(\mathbb{C})$ module, S_{i} is also simple. Indeed, suppose that S_{i}^{\prime} is a non-trivial $M_{n_{i}}(\mathbb{C})$-submodule of S_{i}. Then, $0 \oplus \cdots 0 \oplus S_{i}^{\prime} \oplus \cdots \oplus 0$ is a non-trivial $\mathbb{C}[G]$-submodule of S_{i}.

We have seen in the previous chapter that simple $M_{n_{i}}(\mathbb{C})$-modules are isomorphic to $\mathbb{C}^{n_{i}}$ (column vector modules). It follows that $\operatorname{dim}_{\mathbb{C}}\left(S_{i}\right)=$ n_{i} and as $\operatorname{dim}_{\mathbb{C}} \mathbb{C}[G]=|G|$, we get the following very important relation

$$
|G|=\sum_{i=1}^{r} n_{i}^{2}
$$

The integers $n_{i} \mathrm{~S}$ are precisely the degrees of all possible irreducible representations of G.

In addition, for any finite group there is always an irreducible one dimensional representation : the trivial one. Therefore we always have $n_{1}=1$.

Using this relation we already can determine the degrees of all irreducible representations of certain groups. For abelian groups they are always one.

For $D_{6}: 6=1+1+2^{2}$. We recover what we proved above.
For D_{8} we have $8=1+1+1+1+2^{2}$ hence four one-dimensional ones (exercise : determine them) and one two dimensional (determine it !).

Same for Q_{8}.
We will now determine the integer r : the number of isomorphism classes of irreducible representations.
Definition 1.1. Let G be a finite group. The centre $Z(\mathbb{C}[G])$ of the group algebra $\mathbb{C}[G]$ is defined by

$$
Z(\mathbb{C}[G])=\{z \in \mathbb{C}[G]: z r=r z \text { for all } r \in \mathbb{C}[G]\}
$$

The centre $Z(G)$ of the group G is defined similarly:

$$
Z(G)=\{g \in G: g r=r g \text { for all } r \in G\}
$$

We have:

Lemma 1.1.

$$
\operatorname{dim} Z(\mathbb{C}[G])=r
$$

Proof. Write $\mathbb{C}[G]=M_{n_{1}}(\mathbb{C}) \oplus \cdots \oplus M_{n_{r}}(\mathbb{C})$. Now, the centre of each $M_{n_{i}}(\mathbb{C})$ is \mathbb{C} and there are r factors, hence $Z(\mathbb{C}[G])=\mathbb{C}^{r}$.

Recall that a conjugacy class of $g \in G$ is the set

$$
\left\{x^{-1} g x: x \in G\right\}
$$

and G is a disjoint union of conjugacy classes.
We show:
Theorem 1.2. The number r of irreducible representations is equal to the number of conjugacy classes.

Proof. We calculate the dimension of $Z(\mathbb{C}[G])$ in a different way. Let $\sum_{g \in G} \lambda_{g} g$ be an element of $Z(\mathbb{C}[G])$. By definition, for any $h \in G$ we have

$$
h\left(\sum_{g \in G} \lambda_{g} g\right) h^{-1}=\sum_{g \in G} \lambda_{g} g
$$

We have

$$
h\left(\sum_{g \in G} \lambda_{g} g\right) h^{-1}=\sum_{g \in G} \lambda_{h g h^{-1}} g
$$

Therefore $\lambda_{g}=\lambda_{h g h^{-1}}$ and therefore the function λ_{g} is constant on conjugacy classes. Hence the centre is generated by the

$$
\left\{\sum_{g \in K} g: K \text { conjugacy class }\right\}
$$

But this family is also free because conjugacy classes are disjoint hence it is a basis for $Z(\mathbb{C}[G])$. This finishes the proof.

For example we recover the fact that irreducible representations of abelian groups are one dimensional : each conjugacy class consists of one element.

By what we have seen before, we know that D_{6} has three conjugacy classes, D_{8} has five.
1.2. Conjugacy classes in dihedral groups. We can in fact determine completely conjugacy classes in dihedral groups.

Let G be a finite group and for $x \in G$, let us denote by x^{G} the conjugacy class of x. Let

$$
C_{G}(x)=\{g \in G: g x=x g\}
$$

This is a subgroup of G called the centraliser of x. We have

$$
\left|x^{G}\right|=\left|G: C_{G}(x)\right|=\frac{|G|}{\left|C_{G}(x)\right|}
$$

We have the followin relation (standard result in group theory). Let x_{1}, \ldots, x_{m} be representatives of conjugacy classes in G.

$$
|G|=|Z(G)|+\sum_{x_{i} \notin Z(G)}\left|x_{i}^{G}\right|
$$

Let us now turn to the dihedral group

$$
G=D_{2 n}=\left\{a, b: a^{n}=b^{2}=1, b^{-1} a b=a^{-1}\right\}
$$

Suppose that n is odd.

Consider a^{i} for $1 \leq i \leq n-1$. Then $C\left(a^{i}\right)$ contains the group generated by a : obviously $a a^{i} a^{-1}=a^{i}$. It follows that

$$
\left|a^{G}\right|=\left|G: C_{G}(a)\right| \leq 2=|G:<a>|
$$

On the other hand $b^{-1} a^{i} b=a^{-i}$ so $\left\{a^{i}, a^{-i}\right\} \subset a^{i}{ }^{G}$. As n is odd $a^{i} \neq a^{-i}\left(a^{2 i}=1\right.$ implies that $n=2 i$ but n is odd $)$.

It follows that $\left|a^{i G}\right| \geq 2$ hence

$$
\left|a^{i G}\right|=2 C_{G}\left(a^{i}\right)=<a>a^{i G}=\left\{a^{i}, a^{-i}\right\}
$$

Next $C_{G}(b)$ contains 1 and b. As $b^{-1} a^{i} b=a^{-i}$ and $a^{i} \neq a^{-i}$, therefore a^{i} and $a^{i} b$ do not commute with b. Therefore $C_{G}(b)=\{1, b\}$. It follows that $\left|b^{G}\right|=n$ and we have

$$
b^{G}=\left\{b, a b, \ldots, a^{n-1} b\right\}
$$

(notice that all elements of G are $\left\{1, a, a^{2}, \ldots, a^{n-1}, b, a b, \ldots, a^{n-1} b\right\}$)
We have determined all conjugacy classes in the case n is odd.
Proposition 1.3. The dihedral group $D_{2 n}$ with n odd has exactly $\frac{n+3}{2}$ conjugacy classes and they are

$$
\{1\},\left\{a, a^{-1}\right\}, \ldots,\left\{a^{(n-1) / 2}, a^{-(n-1) / 2}\right\},\left\{b, a b, \ldots, a^{n-1} b\right\}
$$

Suppose $n=2 m$ is even.

We have $a^{m}=a^{-m}$ such that $b^{-1} a^{m} b=a^{-m}=a^{m}$ and the centraliser of a^{m} contains both a and b, hence

$$
C_{G}\left(a^{m}\right)=G
$$

The conjugacy class of a^{m} is just a^{m}.
As before $a^{i^{G}}=\left\{a^{i}, a^{-i}\right\}$ for $1 \leq i \leq m-1$.
We have

$$
a^{j} b a^{-j}=a^{2 j} b, a^{j} b a^{-j}=a^{2 j+1} b
$$

It follows that
$b^{G}=\left\{a^{2 j} b: 0 \leq j \leq m-1\right\}$ and $(a b)^{G}=\left\{a^{2 j+1} b: 0 \leq j \leq m-1\right\}$
We proved:
Proposition 1.4. In $D_{2 n}$ for $n=2 m$ even, there are exactly $m+3$ conjugacy classes, they are

$$
\begin{gathered}
\{1\},\left\{a^{m}\right\},\left\{a^{i}, a^{-i}\right\} \text { for } 1 \leq i \leq m-1, \\
\left\{a^{2 j} b: 0 \leq j \leq m-1\right\} \text { and }(a b)^{G}=\left\{a^{2 j+1} b: 0 \leq j \leq m-1\right\}
\end{gathered}
$$

In particular, we know the number of all irreducible representations of $D_{2 n}$.

