SEMISIMPLE ALGEBRAS AND REPRESENTATION THEORY. EXERCISES 2.

ANDREI YAFAEV

(1) Let A_{n} be the alternating group i.e. $A_{n}=\left\{\sigma \in S_{n}: \epsilon(\sigma)=1\right\}$. For $x \in A_{n}$, let $x^{A_{n}}=\left\{g x g^{-1}: g \in A_{n}\right\}$ and $x^{A_{n}}=\left\{g x g^{-1}\right.$: $\left.g \in S_{n}\right\}$.
i Show that if x commutes with an odd permutation, then $x^{A_{n}}=x^{S_{n}}$
ii Show that if x does not commute with any odd permutation then

$$
\left|x^{A_{n}}\right|=\frac{1}{2}\left|x^{S_{n}}\right|
$$

Hint. If x does not commute with any odd permutation, then $C_{S_{n}}(x)=C_{A_{n}}(x)$.
iii Using that any odd permutation is of the form $(1,2) a$ with $a \in A_{n}$, show that

$$
x^{S_{n}}=x^{A_{n}} \cup\left((1,2) x^{A_{n}}(1,2)^{-1}\right)^{A_{n}}
$$

iv Find conjugacy classes in A_{4} and A_{5}.
(2) - Let G be a finite group and H is a subgroup. Show that H is normal if and only if H is a union of conjugacy classes. Find all normal subgroups of S_{4}.

- Show that A_{5} is a simple group (has no non-trivial normal subgroup).
- Find all normal subgroups of D_{6}. Use this to show that the 2 -dimensional representation ρ_{3} from the lectures is faithful.
(3) Let G be a finite group, $Z(\mathbb{C}[G])$ and $Z(G)$ the centres of $\mathbb{C}[G]$ and G respectively. Let V be a $\mathbb{C}[G]$-module.
i Show that for any z in $Z(\mathbb{C}[G])$, there exists $\lambda_{z} \in \mathbb{C}$ such that

$$
z v=\lambda_{z} v
$$

for all $v \in V$.
Hint. Consider the morphism $v \mapsto z v$ and use Schur's lemma.
ii Show that any finite subgroup of \mathbb{C}^{*} is cyclic.
iii Show that if G has an irreducible faithful representation, then $Z(G)$ is cyclic.
Hint. Use question (i) and show that $z \mapsto \lambda_{z}$ is a group homomorphism for $z \in Z(G)$.
iv Which of the following groups have faithful irreducible representations: $C_{2} \times C_{2}, C_{n}, D_{8}, C_{2} \times D_{8}, C_{3} \times D_{8}$.
For the last one consider

$$
(x, a) \mapsto\left(\begin{array}{cc}
0 & \omega \\
-\omega & 0
\end{array}\right)
$$

where $x^{3}=1$ and

$$
(x, b) \mapsto\left(\begin{array}{cc}
\omega & 0 \\
0 & -\omega
\end{array}\right)
$$

(4) Let G be a finite group, view $\mathbb{C}[G]$ as a module over itself. Find a trivial $\mathbb{C}[G]$-submodule (on which G acts trivially). Are there several such submodules?
(5) Find all irreducible $\mathbb{C}[G]$ submodules for $G=D_{6}$.
(6) Let $G=Q_{8}=\left\{a, b: a^{4}=1, b^{2}=a^{2}, b^{-1} a b=a^{-1}\right\}$. Let V be a two dimensional $\mathbb{C}[G]$-module with basis v_{1}, v_{2} such that

$$
\begin{gathered}
a v_{1}=i v_{1}, \quad b v_{1}=v_{2} \\
a v_{2}=-i v_{2}, \quad b v_{2}=-v_{1}
\end{gathered}
$$

Show that V is irreducible and find a submodule of $\mathbb{C}[G]$ isomorphic to it.
(7) Find conjugacy classes of the group Q_{8}. Give a basis for $Z\left(\mathbb{C}\left[Q_{8}\right]\right)$.
(8) Find the degrees of irreducible representations of D_{12}.

