Semisimple algebras and representation theory. Exercises 1.

Andrei Yafaev

October 20, 2010

1. Let D be a division ring, $a \in D, C(a)$ its centraliser:

$$
C(a)=\{x \in D: x a=a x\}
$$

Show that $C(a)$ is a division ring.
Show that the centre

$$
Z(D)=\{x: x a=a x, \quad \forall a \in D\}
$$

is a division ring.
2. Let M be a module and suppose

$$
M=\oplus_{i \in I} M_{i}
$$

where $M_{i} \mathrm{~S}$ are simple submodules.
Show that M is finitely generated if and only if the set I is finite.
3. Show that the \mathbb{Z}-module \mathbb{Q} is not finitely generated.

Consider \mathbb{Q} / \mathbb{Z} as a \mathbb{Z}-module. Is it finitely generated? Simple? Semisimple?
4. TRUE or FALSE? In each case give a proof or a counterexample.
(a) Any finitely generated module contains a simple submodule
(b) Let M and N be two finite (i.e have finitely many elements) modules over a ring R. Suppose that M and N have the same number of elements. Then M is isomorphic to N.
(c) Suppose that M is such that any finitely generated submodule is semisimple. Then M is semisimple.
(d) Suppose that M is such that any proper submodule and any proper quotient (i.e quotient by a non-trivial submodule) of M is semisimple. Then M is semisimple.
(e) Let R be a ring such that the centre $Z(R)$ is a division ring. Then R is a division ring.
5. Let R_{1} and R_{2} be two rings. Show that $R_{1} \oplus R_{2}$ is never a division ring.

Show that $M_{n}(R)$ for $n>1$ is never a division ring.
Show that if D is a division ring, $M_{n}(D)$ is not isomorphic to $D_{1} \oplus$ $D_{2} \oplus \cdots \oplus D_{r}$ where D_{i} s are division rings.
6. Let k be a field and

$$
R=\left\{\left(\begin{array}{ll}
a & 0 \\
b & c
\end{array}\right): a, b, c \in k\right\}
$$

Show that R is a ring. Find an R-module which is not simple.
7. Find an $M_{n}\left(\mathbb{Z} / p^{2} \mathbb{Z}\right)$-module which is not semisimple.
8. Let F be a field and $R=F[x]$ the ring of polynomials over F. Describe all simple R-modules.
9. Let F be a field. Show that $R=F[x] /\left(x^{2}\right)$ is an algebra over F. Is it semisimple?
10. Consider $M=\mathbb{Z} / 30 \mathbb{Z}$ as a \mathbb{Z} module. Show that M is semisimple and find a composition series.
Show that the \mathbb{Z}-module $\mathbb{Z} / p^{2} \mathbb{Z}$ is not semisimple but it does have a composition series.

More generally, show that any finite module M (i.e. M has finitely many elements) has a composition series.

