This problem set is due at the beginning of the noon lecture on Monday 13 March.

Reading:
- Handout #11: The Lagrangian approach to mechanics.

1. [An old friend: See Problem 3 of Problem Set #3]

A double pendulum consists of rigid massless rods of lengths ℓ_1 and ℓ_2 and particles of mass m_1 and m_2, respectively, attached as in the diagram. (All pivots are frictionless, of course.)

(a) Find the Lagrangian for the system, using as generalized coordinates the angles θ_1 and θ_2.

(b) Find the exact equations of motion for the system, using the Lagrangian. Do the equations of motion agree with those found by Newtonian methods in Problem Set #3?
2. Let $F(q,t)$ be an arbitrary function of the coordinates and the time (but not of the velocities).

(a) Show by direct calculation that the Lagrangian
\[L'(q, \dot{q}, t) \equiv L(q, \dot{q}, t) + \frac{d}{dt} F(q, t) \]
leads to the same equations of motion as does the Lagrangian L.

Remark: Such a change of Lagrangian is occasionally called a “(Lagrangian) gauge transformation”; though $L' \neq L$, the two Lagrangians are physically equivalent, as they lead to the same dynamics.

(b) Can this be generalized to permit F to depend on the \dot{q} as well?

There is a partial converse to this theorem: If the Lagrange equations for L and L' are formally identical — that is, if
\[\Lambda_i(q, \dot{q}, \ddot{q}, t) \equiv \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} \dot{q}_j + \frac{\partial^2 L}{\partial \dot{q}_i \partial \ddot{q}_j} \ddot{q}_j + \frac{\partial^2 L}{\partial \dot{q}_i \partial t} - \frac{\partial L}{\partial q_i} \]
is the same function of the q, \dot{q}, \ddot{q} and t as is the analogously defined $\Lambda'_i(q, \dot{q}, \ddot{q}, t)$ — then $L'(q, \dot{q}, t) \equiv L(q, \dot{q}, t) + \frac{d}{dt} F(q, t)$ for some function $F(q, t)$. For a proof, see Saletan + Cromer, *Theoretical Mechanics*, pp. 40–41.

3. (a) Show that the Lagrangian function
\[L(r, \dot{r}, t) = \frac{1}{2} m \dot{r}^2 - e \varphi(r, t) + e \dot{r} \cdot A(r, t) \]

yields the correct equation of motion for a particle with electric charge e moving in an electromagnetic field, namely
\[m \ddot{r} = e (E + \dot{r} \times B) \]

where
\[E = -\nabla \varphi - \frac{\partial A}{\partial t} \]
\[B = \nabla \times A \]

are the electric and magnetic fields, respectively. [The vector field A is called the vector potential, and the scalar field φ is called the scalar potential. Both A and φ may be functions of x, y, z and t.]

(b) Show that when the potentials of the electromagnetic field are subjected to an “(electromagnetic) gauge transformation”
\[A \rightarrow A' \equiv A + \nabla \psi \]
\[\varphi \rightarrow \varphi' \equiv \varphi - \frac{\partial \psi}{\partial t} \]

where $\psi(r, t)$ is an arbitrary function, the electromagnetic field E and B they describe do not change.
(c) Determine how the Lagrangian changes if we replace φ by φ' and A by A'. How is it that the equations of motion are unchanged, despite the fact that $L' \neq L$? (Compare to the preceding problem!)

4. A particle is subject to a constant force F.

(a) Show the Newtonian equations of motion are invariant under spatial translation $\mathbf{r} \mapsto \mathbf{r}' \equiv \mathbf{r} + \mathbf{e}$, where \mathbf{e} is an arbitrary constant vector.

(b) What does the transformation $\mathbf{r} \mapsto \mathbf{r}' \equiv \mathbf{r} + \mathbf{e}$ do to the Lagrangian?

(c) Find the conserved quantity associated with this symmetry. Verify, using the general solution to the equation of motion, that this quantity is indeed conserved.

Moral: While translation-invariance of the dynamical law always implies (for a Lagrangian system) the existence of a conserved quantity, that quantity is not always linear momentum.

5. Consider a system of N point-particles interacting through a potential that depends only on the differences between particle positions, i.e. $V = V(r_2-r_1, r_3-r_1, \ldots, r_N-r_1)$.

(a) Show that the equations of motion are invariant under a “Galilean boost” with velocity \mathbf{u}, that is, the transformation $\mathbf{r}_i \mapsto \mathbf{r}'_i \equiv \mathbf{r}_i + \mathbf{u} t$. [Cf. the discussion of Galileo’s Principle of Relativity in Handout #1.]

(b) How does the Lagrangian change under a Galilean boost? Show that L is *not* invariant, but rather undergoes a “(Lagrangian) gauge transformation”

$$L'(\mathbf{r}', \dot{\mathbf{r}}') = L(\mathbf{r}, \dot{\mathbf{r}}) + \frac{d}{dt} F(\mathbf{r}, t),$$

and find the function $F(\mathbf{r}, t)$.

(c) Find the constant of motion guaranteed by part (b) and Noether’s theorem. What does it express physically?