1. [An old friend: See Problem 3 of Problem Set #3]

A double pendulum consists of rigid massless rods of lengths \(\ell_1 \) and \(\ell_2 \) and particles of mass \(m_1 \) and \(m_2 \), respectively, attached as in the diagram. (All pivots are frictionless, of course.)

(a) Find the Lagrangian for the system, using as generalized coordinates the angles \(\theta_1 \) and \(\theta_2 \).
(b) Find the exact equations of motion for the system, using the Lagrangian. Do the
equations of motion agree with those found by Newtonian methods in Problem
Set #3?

2. Let $F(q, t)$ be an arbitrary function of the coordinates and the time (but not of the
velocities).

(a) Show by direct calculation that the Lagrangian $L'(\dot{q}, \ddot{q}, t) \equiv L(q, \dot{q}, t) + \frac{d}{dt} F(q, t)$
leads to the same equations of motion as does the Lagrangian L.

Remark: Such a change of Lagrangian is occasionally called a “(Lagrangian)
gauge transformation”; though $L' \neq L$, the two Lagrangians are physically equiv-
elent, as they lead to the same dynamics.

(b) Can this be generalized to permit F to depend on the \dot{q} as well?

[There is a partial converse to this theorem: If the Lagrange equations for L and L'
are formally identical — that is, if

$$
\lambda_i(q, \dot{q}, \ddot{q}, t) \overset{\text{def}}{=} \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} \ddot{q}_j + \frac{\partial^2 L}{\partial \dot{q}_i \partial \dot{q}_j} \dddot{q}_j + \frac{\partial^2 L}{\partial \dot{q}_i \partial \ddot{q}_j} - \frac{\partial L}{\partial \dot{q}_i}
$$

is the same function of the q, \dot{q}, \ddot{q} and t as is the analogously defined $\lambda'_i(q, \dot{q}, \ddot{q}, t)$
— then $L'(q, \dot{q}, t) \equiv L(q, \dot{q}, t) + \frac{d}{dt} F(q, t)$ for some function $F(q, t)$. For a proof, see

3. (a) Show that the Lagrangian function

$$
L(r, \dot{r}, t) = \frac{1}{2} m \dot{r}^2 - e \varphi(r, t) + e \dot{r} \cdot A(r, t)
$$

yields the correct equation of motion for a particle with electric charge e moving
in an electromagnetic field, namely

$$
m \ddot{r} = e (E + \dot{r} \times B)
$$

where

$$
E = -\nabla \varphi - \frac{\partial A}{\partial t}
$$

$$
B = \nabla \times A
$$

are the electric and magnetic fields, respectively. [The vector field A is called
the vector potential, and the scalar field φ is called the scalar potential. Both A
and φ may be functions of x, y, z and t.]
(b) Show that when the potentials of the electromagnetic field are subjected to an “(electromagnetic) gauge transformation”

\[A \rightarrow A' \equiv A + \nabla \psi \]

\[\varphi \rightarrow \varphi' \equiv \varphi - \frac{\partial \psi}{\partial t} \]

where \(\psi(r, t) \) is an arbitrary function, the electromagnetic field \(E \) and \(B \) they describe do not change.

(c) Determine how the Lagrangian changes if we replace \(\varphi \) by \(\varphi' \) and \(A \) by \(A' \). How is it that the equations of motion are unchanged, despite the fact that \(L' \neq L \)? (Compare to the preceding problem!)

4. A particle is subject to a constant force \(F \).

(a) Show the Newtonian equations of motion are invariant under spatial translation \(r \mapsto r' \equiv r + e \), where \(e \) is an arbitrary constant vector.

(b) What does the transformation \(r \mapsto r' \equiv r + e \) do to the Lagrangian?

(c) Find the conserved quantity associated with this symmetry. Verify, using the general solution to the equation of motion, that this quantity is indeed conserved.

Moral: While translation-invariance of the dynamical law always implies (for a Lagrangian system) the existence of a conserved quantity, that quantity is not always linear momentum.

5. Consider a system of \(N \) point-particles interacting through a potential that depends only on the differences between particle positions, i.e. \(V = V(r_2-r_1, r_3-r_1, \ldots, r_N-r_1) \).

(a) Show that the equations of motion are invariant under a “Galilean boost” with velocity \(u \), that is, the transformation \(r_i \mapsto r_i' = r_i + ut \). [Cf. the discussion of Galileo’s Principle of Relativity in Handout #1.]

(b) How does the Lagrangian change under a Galilean boost? Show that \(L \) is not invariant, but rather undergoes a “(Lagrangian) gauge transformation”

\[L(r', \dot{r}') = L(r, \dot{r}) + \frac{d}{dt} F(r, t) , \]

and find the function \(F(r, t) \).

(c) Find the constant of motion guaranteed by part (b) and Noether’s theorem. What does it express physically?