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YEAR 2012–2013, TERM 2

HANDOUT #2: COMPACTNESS OF METRIC SPACES

Compactness in metric spaces

The closed intervals [a, b] of the real line, and more generally the closed bounded subsets
of Rn, have some remarkable properties, which I believe you have studied in your course in
real analysis. For instance:

Bolzano–Weierstrass theorem. Every bounded sequence of real numbers has
a convergent subsequence.

This can be rephrased as:

Bolzano–Weierstrass theorem (rephrased). Let X be any closed bounded
subset of the real line. Then any sequence (xn) of points in X has a subsequence
converging to a point of X.

(Why is this rephrasing valid? Note that this property does not hold if X fails to be closed
or fails to be bounded — why?) And here is another example:

Heine–Borel theorem. Every covering of a closed interval [a, b] — or more
generally of a closed bounded set X ⊂ R — by a collection of open sets has a
finite subcovering.

These theorems are not only interesting — they are also extremely useful in applications, as
we shall see. So our goal now is to investigate the generalizations of these concepts to metric
spaces.

We begin with some definitions: Let (X, d) be a metric space. A covering of X is a
collection of sets whose union is X. An open covering of X is a collection of open sets
whose union is X. The metric space X is said to be compact if every open covering has
a finite subcovering.1 This abstracts the Heine–Borel property; indeed, the Heine–Borel
theorem states that closed bounded subsets of the real line are compact.

We can rephrase compactness in terms of closed sets by making the following observation:
If U is an open covering of X, then the collection F of complements of sets in U is a collection
of closed sets whose intersection is empty (why?); and conversely, if F is a collection of closed
sets whose intersection is empty, then the collection U of complements of sets in F is an open
covering. Thus, a space X is compact if and only if every collection of closed sets with an
empty intersection has a finite subcollection whose intersection is also empty. Or, passing to
the contrapositive, we can put it another way by making the following definition: a collection
F of sets is said to have the finite intersection property if every finite subcollection of F
has a nonempty intersection. We have then shown:

1Or more formally: If (Uα)α∈I (where I is some index set) is a collection of open sets of X satisfying
⋃

α∈I

Uα = X , then there exists a finite subset J ⊆ I such that
⋃

α∈J

Uα = X .
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Proposition 2.1 A metric space X is compact if and only if every collection F of closed
sets in X with the finite intersection property has a nonempty intersection.

So far so good; but thus far we have merely made a trivial reformulation of the definition
of compactness. Let us go farther by making another definition:

A metric space X is said to be sequentially compact if every sequence (xn)∞n=1 of
points in X has a convergent subsequence. This abstracts the Bolzano–Weierstrass property;
indeed, the Bolzano–Weierstrass theorem states that closed bounded subsets of the real line
are sequentially compact.

And finally, let us make another definition: A metric space (X, d) is said to be totally
bounded (or precompact) if, for every ǫ > 0, the space X can be covered by a finite family
of open balls of radius ǫ. (You could alternatively use closed balls and get the same concept
— why?) Another way of saying this is: A metric space (X, d) is totally bounded if, for
every ǫ > 0, there exists a finite subset A ⊆ X such that d(x, A) < ǫ for all x ∈ X. (Why is
this equivalent?) Any such finite subset is called an ǫ-net.2

We then have the following fundamental theorem characterizing compact metric spaces:

Theorem 2.2 (Compactness of metric spaces) For a metric space X, the following are
equivalent:

(a) X is compact, i.e. every open covering of X has a finite subcovering.

(b) Every collection of closed sets in X with the finite intersection property has a nonempty
intersection.

(c) If F1 ⊇ F2 ⊇ F3 ⊇ . . . is a decreasing sequence of nonempty closed sets in X, then
∞
⋂

n=1

Fn is nonempty.

(d) X is sequentially compact, i.e. every sequence in X has a convergent subsequence.

(e) X is totally bounded and complete.

We have already proved the equivalence of (a) and (b). Let us now prove (b) =⇒ (c)
=⇒ (d) =⇒ (e) =⇒ (a).

Proof of (b) =⇒ (c). This is trivial, since a decreasing sequence of nonempty closed
sets obviously has the finite intersection property. (Why? If n1, . . . , nk are given indices,
what is Fn1

∩ Fn2
∩ . . . ∩ Fnk

?) �

Proof of (c) =⇒ (d). Let (xn) be a sequence of points in X, and let Fn be the closure of
the set {xn, xn+1, xn+2, . . .}. The family of sets {Fn} is decreasing (i.e. F1 ⊇ F2 ⊇ F3 ⊇ . . .),

and all the sets Fn are nonempty and closed. Therefore, by (c), the set
∞
⋂

n=1

Fn contains

2Some authors (e.g. Kolmogorov–Fomin) define an ǫ-net to be any finite subset A ⊆ X such that d(x, A) ≤
ǫ for all x ∈ X , i.e. with non-strict inequality. This changes slightly the statements of proofs but makes no
essential difference — can you see why?
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at least one point a. Then it is easy to see that (xn) contains a subsequence converging
to a: for instance, set n1 = 1 and then let nk be the smallest integer > nk−1 such that
d(xnk

, a) < 1/k; such an integer exists because a belongs to all the sets Fn. (You should
make sure you understand this last step.) �

Proof of (d) =⇒ (e). To prove that X is complete, let (xn) be any Cauchy sequence
in X. By (d), (xn) contains a subsequence converging to some point a ∈ X. But then, by
Proposition 1.27 (see last week’s notes), the whole sequence (xn) converges to a. This shows
that X is complete.

Now suppose that X is not totally bounded, i.e. there exists a number α > 0 such that
X has no finite covering by open balls of radius α. Then we can define a sequence (xn)∞n=1 of
points in X having d(xi, xj) ≥ α for all i 6= j, by the following inductive construction: First
let x1 be any point in X. Then, supposing that x1, . . . , xn−1 have been chosen, we know that
the union of the open balls of center xi (1 ≤ i ≤ n− 1) and radius α is not the whole space,
hence we can choose a point xn satisfying d(xi, xn) ≥ α for all i < n. When we are done, we
have d(xi, xj) ≥ α for all i 6= j (why?). On the other hand, the sequence (xn) cannot have
any convergent subsequence; for if it had a subsequence (xnk

) converging to a, then there
would exist an integer k0 such that d(xnk

, a) < α/2 for all k ≥ k0, and hence by the triangle
inequality d(xnk

, xn
k′
) < α for all k, k′ ≥ k0, contrary to the definition of the sequence (xn).3

Proof of (e) =⇒ (a). Suppose that X is not compact, i.e. we have an open covering
(Uα)α∈I of X such that no finite subfamily is a covering of X. We will define a sequence
(xn)∞n=1 of points in X, as follows: First choose an ǫ-net with ǫ = 1/2 (this is possible
because X is totally bounded), and let x1 be any element of that ǫ-net with the property
that no finite subfamily of (Uα)α∈I is a covering of B(x1, 1/2). [Such an element has to exist,
because if every ball of radius 1/2 centered at a point of the ǫ-net had a finite subcover
from (Uα)α∈I , then the whole space X would have a finite subcover from (Uα)α∈I (why?).]
Next choose an ǫ-net with ǫ = 1/4, and let x2 be any element of that ǫ-net satisfying
B(x1, 1/2) ∩ B(x2, 1/4) 6= ∅ and having the property that no finite subfamily of (Uα)α∈I

is a covering of B(x2, 1/4). [Such an element has to exist, because if every ball of radius
1/4 centered at a point of the ǫ-net and having nonempty intersection with B(x1, 1/2) had
a finite subcover from (Uα)α∈I , then B(x1, 1/2) would have a finite subcover from (Uα)α∈I

(why?).] Continue analogously: at the nth stage, choose an ǫ-net with ǫ = 1/2n, and let xn

be any element of that ǫ-net satisfying B(xn−1, 1/2n−1) ∩ B(xn, 1/2n) 6= ∅ and having the
property that no finite subfamily of (Uα)α∈I is a covering of B(xn, 1/2n).

It follows from this construction that

d(xn−1, xn) ≤ 1

2n−1
+

1

2n
≤ 1

2n−2
(2.1)

(why?) and hence that, for m < n,

d(xm, xn) ≤ d(xm, xm+1) + d(xm+1, xm+2) + . . . + d(xn−1, xn) (2.2a)

3Another way of stating this argument is: The sequence (xn) clearly cannot have any Cauchy subsequence;
therefore, it cannot have any convergent subsequence.
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≤ 1

2m−1
+

1

2m
+ . . . +

1

2n−2
(2.2b)

≤ 1

2m−2
, (2.2c)

which shows that (xn) is a Cauchy sequence in X. Since X is complete, the sequence (xn)
converges to some point a ∈ X.

Now let α0 ∈ I be an index such that a ∈ Uα0
(why must such an index exist?). There

exists ǫ > 0 such that B(a, ǫ) ⊆ Uα0
. By the definition of a, there exists an integer n such

that d(xn, a) < ǫ/2 and also 1/2n < ǫ/2 (why?). The triangle inequality then shows that

B(xn, 1/2n) ⊆ B(a, ǫ) ⊆ Uα0
(2.3)

(why?). But this contradicts the fact that no finite subfamily of (Uα)α∈I is a covering of
B(xn, 1/2n). Whew! �

Warning: For general (nonmetrizable) topological spaces, compactness is not equivalent
to sequential compactness.

We also have the following easy fact:

Proposition 2.3 Every totally bounded metric space (and in particular every compact met-
ric space) is separable.

Proof. If X is totally bounded, then there exists for each n a finite subset An ⊆ X such

that, for every x ∈ X, d(x, An) < 1/n. Now let A =
∞
⋃

n=1

An. The set A is either finite or

countably infinite (why?); and for each x ∈ X we have d(x, A) ≤ d(x, An) < 1/n, hence
d(x, A) = 0, hence x ∈ A (why?). This proves that A is dense in X. �

Intuitively, a separable space is one that is “well approximated by a countable subset”,
while a compact space is one that is “well approximated by a finite subset”. (Albeit in a
slightly different sense of “well approximated” in the two cases.)

A subset A of a metric space X is said to be compact if A, considered as a subspace of
X and hence a metric space in its own right, is compact. We have the following easy facts,
whose proof I leave to you:

Proposition 2.4

(a) A closed subset of a compact space is compact.

(b) A compact subset of any metric space is closed.

(c) A finite union of compact sets is compact.
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Of course, an infinite union of compact sets need not even be closed (give an example!); and
even when it is closed, it need not be compact (give another example!).

The Heine–Borel (or Bolzano–Weierstrass) theorem of elementary real analysis can be
restated as follows:

Proposition 2.5 (Compactness of subsets in R) A subset A ⊆ R is compact if and
only if it is closed and bounded.

The corresponding result for Rn is an easy consequence:

Proposition 2.6 (Compactness of subsets in Rn) A subset A ⊆ Rn is compact if and
only if it is closed and bounded.

Proof. Every compact subset of Rn is obviously closed and bounded (why?), so we need
only prove the converse. Moreover, every bounded subset of R

n is contained in a cube
[−M, M ]n for some M < ∞, so by Proposition 2.4(a) we need only prove that [−M, M ]n

is compact. But this follows from the Heine–Borel (or Bolzano–Weierstrass) theorem for R

combined with the fact that any finite Cartesian product of compact spaces is compact, a
straightforward result that you will prove in Problem 2 of Problem Set #2. �

I want to stress that the situation is very different in infinite-dimensional normed linear
spaces. Later in this lecture we will show that the closed unit ball in the sequence spaces
ℓ∞, c0, ℓ1 and ℓ2 is not compact, and we will give examples of compact sets in these spaces.

Continuous functions on compact metric spaces

Last week we saw that the inverse image of a closed set by a continuous function is closed,
but that this is not in general true for direct images. However, for some special closed sets
— namely, the compact ones — the direct image is closed and indeed is compact:

Proposition 2.7 (Continuous image of a compact space) The direct image of a com-
pact metric space by a continuous function is compact.

This can be formulated precisely in several slightly different, but equivalent, ways:
1) Let X and Y be metric spaces, with X compact, and let f : X → Y be a continuous

map that is surjective (i.e. the image f [X] equals all of Y ). Then Y is compact.
2) Let X and Y be metric spaces, with X compact, and let f : X → Y be a continuous

map. Then f [X] is a compact subset of Y .
3) Let X and Y be metric spaces, and let f : X → Y be a continuous map. If A is a

compact subset of X, then f [A] is a compact subset of Y .
You should make sure you understand why these three formulations are equivalent.
In order to illustrate some common techniques of proof, I will give two different proofs of

this proposition: one exploiting open coverings, and one exploiting convergent subsequences.
In both cases I will prove the first of the three formulations.
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First Proof of Proposition 2.7. Let (Uα)α∈I be an open covering of Y . Then the
sets f−1[Uα] are open (why?) and form an open covering of X (why?). Since X is compact,
there exists a finite subset J ⊆ I such that (f−1[Uα])α∈J still forms a covering of X. But
then (Uα)α∈J forms a covering of Y (why?). �

Second Proof of Proposition 2.7. Consider a sequence (yn) of elements of Y . Because
f is surjective, we can choose a sequence (xn) of points in X such that f(xn) = yn. Since
X is compact, there exists a subsequence (xnk

) that converges to some point a ∈ X. But
since f is continuous at a, the sequence (ynk

) converges to f(a) (why?). This proves that Y
is sequentially compact, hence compact. �

It follows easily from Proposition 2.7 that a continuous real-valued function on a compact
metric space is automatically bounded, and furthermore that the maximum and minimum
values are attained:

Corollary 2.8 Let X be a compact metric space, and let f : X → R be continuous. Then
f [X] is bounded, and there exist points a, b ∈ X such that f(a) = inf

x∈X
f(x) and f(b) =

sup
x∈X

f(x).

Proof. By Proposition 2.7, f [X] is a compact subset of R, hence closed and bounded. Now,
any bounded set A ⊆ R has a least upper bound sup A and a greatest lower bound inf A,
and these two points belong to the closure A (why?). But applying this to A = f [X], which
is closed, we conclude that sup f [X] and inf f [X] belong to f [X] itself, which is exactly what
is being claimed (why?). �

Note that this result can fail if X is noncompact, for instance if X = R: a continuous
real-valued function on R need not be bounded; and even if it is bounded, its supremum and
infimum need not be attained. You should give examples to illustrate both these points.

A few weeks from now we will prove, in fact, that a metric space is compact if and only
if every continuous real-valued function on it is bounded.

Here is another property of continuous functions on compact metric spaces, whose proof
likewise illustrates some ways of exploiting compactness but is slightly trickier than that of
Proposition 2.7:

We begin by recalling that if (X, dX) and (Y, dY ) are two metric spaces, then a mapping
f : X → Y is continuous at the point x ∈ X if, for each ǫ > 0, there exists δ > 0 (depending
of course on ǫ) such that, for all x′ ∈ X, dX(x, x′) < δ implies dY (f(x), f(x′)) < ǫ. In
particular, a mapping f : X → Y is continuous tout court if it is continuous at every point
x ∈ X, i.e. if, for each ǫ > 0 and each x ∈ X, there exists δ > 0 (depending on ǫ and x) such
that, for all x′ ∈ X, dX(x, x′) < δ implies dY (f(x), f(x′)) < ǫ. Note that here δ can depend
on x as well as on ǫ.

We now make a new definition: A mapping f : X → Y is uniformly continuous if,
for each ǫ > 0, there exists δ > 0 (depending of course on ǫ) such that, for all x, x′ ∈ X,
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dX(x, x′) < δ implies dY (f(x), f(x′)) < ǫ. The point is that, in uniform continuity, δ can
still depend on ǫ (in general it has to) but is not allowed to depend on x.

So what we have here is an interchange of quantifiers: written formally, using the nota-
tions ∀ (“for all”) and ∃ (“there exists”), we have:

Continuity: (∀ǫ > 0) (∀x ∈ X) (∃δ > 0) (∀x′ ∈ X)

dX(x, x′) < δ =⇒ dY (f(x), f(x′)) < ǫ

Uniform continuity: (∀ǫ > 0) (∃δ > 0) (∀x ∈ X) (∀x′ ∈ X)

dX(x, x′) < δ =⇒ dY (f(x), f(x′)) < ǫ

To see that uniform continuity is truly a stronger property than continuity, consider the
map f : R → R defined by f(x) = x2. It is continuous but not uniformly continuous. You
should supply the details of the proof that f is not uniformly continuous.

The existence on R of a function that is continuous but not uniformly continuous is
directly linked to the fact that R is noncompact. In particular, we have:

Proposition 2.9 Let f be a continuous mapping of a compact metric space X into a metric
space Y . Then f is uniformly continuous.

To help you get familiar with different techniques of proof, I shall once again give two
different proofs of this proposition: one exploiting open coverings, and one exploiting con-
vergent subsequences.

First Proof of Proposition 2.9. Given ǫ > 0 and x ∈ X, there exists a δx > 0 such
that dX(x, x′) < δx implies dY (f(x), f(x′)) < ǫ/2. [You will see later why we took ǫ/2 rather
than ǫ here.] Now let Ux = B(x, 1

2
δx), the open ball of center x and radius 1

2
δx. [You will see

later why it was clever to choose the radius to be half of δx.] The collection {Ux}x∈X is an
open covering of X, so it has a finite subcovering {Ux1

, . . . , Uxn
}. Let δ = 1

2
min(δx1

, . . . , δxn
).

Clearly δ > 0. Now, given two points y, z ∈ X such that dX(y, z) < δ, the point y must
belong to some Uxi

(why?) and hence dX(y, xi) < 1
2
δxi

. But then

dX(z, xi) ≤ dX(z, y) + dX(y, xi) < δ + 1
2
δxi

≤ δxi
. (2.4)

So both y and z lie at a distance < δxi
from the point xi, which implies (by definition of

δxi
) that dY (f(y), f(xi)) < ǫ/2 and dY (f(z), f(xi)) < ǫ/2. Hence dY (f(y), f(z)) < ǫ, which

shows that f is uniformly continuous. �

Second Proof of Proposition 2.9. Suppose that f is not uniformly continuous;
then there exists a number ǫ > 0 and two sequences (xn) and (yn) of points of X such that
dX(xn, yn) < 1/n and dY (f(xn), f(yn)) ≥ ǫ. By compactness we can find a subsequence (xnk

)
converging to a point a; and since dX(xnk

, ynk
) < 1/nk, it follows from the triangle inequality

that the sequence (ynk
) also converges to a. But since f is continuous at a, there exists δ > 0

such that dY (f(x), f(a)) < ǫ/2 whenever dX(x, a) < δ. Now take k such that dX(xnk
, a) < δ

and dX(ynk
, a) < δ (why can this be done?); it follows that dY (f(xnk

), f(ynk
)) < ǫ (why?),

contrary to the definition of the sequences (xn) and (yn). �
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Which one of these two proofs do you consider simpler? This is probably a question of
taste: my suspicion is that most students will prefer the proof using subsequences, since
subsequences are a more familiar concept than open coverings. And of course I urge you to
use, in any given problem, the proof that you find simplest (provided only that it is correct ,
of course!). But I nevertheless also urge you to study both of these proofs carefully and to
become familiar with the use of both subsequences and open coverings, because there exist
applications in analysis in which either one or the other may be more convenient.

Remark. It is natural to ask whether the converse to this theorem is true: that is,
if X is a metric space such that every continuous real-valued function on X is uniformly
continuous, is X necessarily compact? The answer is no: for instance, if X is any discrete
metric space, then every real-valued function on X is automatically both continuous and
uniformly continuous (why?); but a discrete metric space is compact if and only if it is finite
(why?).

So the obvious next question is: Can one characterize the metric spaces in which ev-
ery continuous real-valued function is uniformly continuous (in the sense of finding other,
equivalent conditions)? Some answers to this question can be found in

M. Atsuji, Uniform continuity of continuous functions of metric spaces, Pacific
J. Math. 8, 11–16 (1958); erratum, 941.

H. Hueber, On uniform continuity and compactness in metric spaces, Amer.
Math. Monthly 88, 204–205 (1981).

G. Beer, Metric spaces on which continuous functions are uniformly continu-
ous and Hausdorff distance, Proc. Amer. Math. Soc. 95, 653–658 (1985).

T. Jain and S. Kundu, Atsuji completions: equivalent characterisations, Topol-
ogy Appl. 154, 28–38 (2007).

It is amusing that questions arising from elementary functional analysis can still be the
subject of ongoing research.

Compactness in infinite-dimensional spaces

Since the concept of compactness plays a central role in functional analysis (and indeed
in all areas of analysis4), it is important for us to obtain some intuition about when sets are
or are not compact. In a finite-dimensional normed linear space (i.e. Rn or Cn) we know the
answer: a set is compact if and only if it is closed and bounded. But this result is completely
false in infinite-dimensional spaces: indeed, we will prove about 2 weeks from now that the
closed unit ball in a normed linear space (which is certainly closed and bounded) is compact
if and only if the space is finite-dimensional! Otherwise put, the closed unit ball in an
infinite-dimensional normed linear space is never compact.

4For instance, if you have studied Complex Analysis you may recall Montel’s theorem, which states
that if (fn) is a uniformly bounded sequence of functions that are analytic in a domain D in the complex
plane, then there exists a subsequence (fnk

) that converges (uniformly on compact subsets of D) to an
analytic function g. This important theorem is precisely a statement about compactness in a certain infinite-
dimensional space of analytic functions (which is, however, a non-normable space).
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For now, let us limit ourselves to proving the noncompactness of the closed unit ball in
some of our favorite infinite-dimensional spaces.

Example 1: ℓ∞. The closed unit ball in ℓ∞ is not compact — indeed, it is not even
separable (see Proposition 1.18 last week along with Proposition 2.3).5

We see from this example that if there is to be any hope for the closed unit ball to be
compact, the underlying space had better be separable. Now, we know that the spaces c0,
ℓ1 and ℓ2 are separable, unlike ℓ∞ (see Proposition 1.19 last week and Problem 7 of Problem
Set #1), so maybe things will work out better there. Alas, this is not the case:

Example 2: c0. The closed unit ball in c0 is not compact. To see this, let ei be the
infinite sequence that has a 1 in the ith coordinate and 0 everywhere else. Clearly ei ∈ c0

and ‖ei‖∞ = 1, so the points ei all belong to the closed unit ball of c0. But ‖ei − ej‖∞ = 1
for i 6= j, so the sequence (ei)

∞

i=1 cannot possibly have any convergent subsequence.

The same proof works in ℓ1 and ℓ2, since the vectors ei also belong to the closed unit
balls of those spaces. The computation changes slightly — for i 6= j we have ‖ei − ej‖1 = 2
and ‖ei − ej‖2 =

√
2 (why?) — but the conclusion is the same.

What about spaces C(A) of bounded continuous real-valued functions? Well, in Problem
5 of Problem Set #1 you showed that the space C(R) of bounded continuous real-valued
functions on the whole real line R is not separable (neither is its closed unit ball), so its
closed unit ball is certainly not compact. On the other hand, we will see a few weeks from
now that the spaces C[a, b] of (bounded) continuous real-valued functions on a closed bounded
interval of the real line — and more generally the spaces C(X) of (bounded) continuous real-
valued functions on an arbitrary compact metric space X — are separable, so maybe there
is hope for their closed unit balls to be compact. Alas, this too fails:

Example 3: C[0, 1]. First consider the function f ∈ C(R) defined by

f(x) = max(1 − |x|, 0) . (2.5)

It is a triangle-shaped bump centered at 0 and of “half-width” 1, satisfying 0 ≤ f ≤ 1. Now
define, for each integer n ≥ 1, the function

fn(x) = f
(

2n(n + 1)(x − 1/n)
)

. (2.6)

It is a triangle-shaped bump centered at the point 1/n and of “half-width” 1/[2n(n + 1)],
satisfying 0 ≤ fn ≤ 1; in particular, its restriction to the interval [0, 1] belongs to the space
C[0, 1] and satisfies ‖fn‖∞ = 1. Taking the half-widths to be 1/[2n(n + 1)] is sufficient to
guarantee that the supports of the different functions fn do not overlap (why?), so we have

5As stated, Proposition 1.18 claims only that the whole space ℓ∞ is not separable. But if you look at the
proof, you will see that the points eI all belong to the closed unit ball of ℓ∞, and the whole proof could have
been done within the closed unit ball of ℓ∞ rather than within ℓ∞ [in particular, the balls B(eI ,

1

2
) could

be taken to be the balls within this smaller space]. Indeed, it is easy to show that a normed linear space is
separable if and only if its closed (or open) unit ball is.
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‖fn − fn′‖∞ = 1 for n 6= n′. It follows from this that the sequence (fn)∞n=1 cannot have any
convergent subsequence, so the closed unit ball in C[0, 1] is noncompact.

We will use a slight generalization of this reasoning, 2 weeks from now, to prove that the
closed unit ball in an infinite-dimensional normed linear space is always noncompact.

So, what kinds of sets in an infinite-dimensional normed linear space can be compact?
Of course they have to be closed and bounded, but this is not enough: roughly speaking,
compact sets in infinite-dimensional spaces have to be “very tightly confined” in most of
the (infinitely many) coordinate directions — unlike closed balls, which spread equally in all
directions. That is, they must be very compact in the sense that this word is given by the
Oxford English dictionary:

Compact, adj.

A.1.b. Packed closely together.

B.1. Closely packed or knit together.

B.1.b. Having the parts so arranged that the whole lies within relatively small
compass, without straggling portions or members; nearly and tightly packed or
arranged; not sprawling, scattered, or diffuse.

To understand what this means in practice, let us give some examples of compact sets in the
sequence spaces ℓ∞, c0, ℓ1 and ℓ2.

If x = (x1, x2, . . .) is an infinite sequence of real numbers, let us define Sx to be the set
consisting of those infinite sequences of real numbers that are “bounded above elementwise
by x”, i.e.

Sx = {y ∈ R
N: |yn| ≤ |xn| for all n} . (2.7)

Note that if x belongs to one of the spaces ℓ∞, c0, ℓ1 or ℓ2, then the set Sx is a subset of the
same space (why?), and it is fairly easy to see that it is closed and bounded (can you prove
this?).

If x is the sequence (1, 1, 1, . . .) whose entries are all 1 — this sequence of course belongs
to ℓ∞ — then Sx is precisely the closed unit ball of ℓ∞, which is noncompact. But what if
x belongs to the smaller space c0, i.e. it is not merely bounded but is in fact convergent to
zero? We have the following result:

Proposition 2.10 If x ∈ c0, then Sx is a compact subset of c0 (and hence also of ℓ∞).

Proof. Since Sx is a closed subset of c0, and c0 is complete, it follows that Sx is complete.
Hence we need only prove that Sx is totally bounded.

So consider any ǫ > 0. Because lim
n→∞

xn = 0, there exists an integer N (depending of

course on ǫ) such that |xn| ≤ ǫ/2 for all n > N . Now consider the subset S
(N)
x ⊆ Sx defined

by
S(N)

x = {y ∈ Sx: yn = 0 for all n > N} . (2.8)
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The set S
(N)
x is isometric to a closed bounded subset of the space RN (why?) and is thus

compact. In particular it is totally bounded, so we can choose a finite ǫ/2-net A ⊆ S
(N)
x .

But A is also an ǫ-net for Sx (why?). �

In Problem 3 of Problem Set #2 you will prove the analogues of this result for ℓ1 and ℓ2.
And in Problem 4 you will prove two strong converses to Proposition 2.10:

(a) If x ∈ ℓ∞ \ c0, then Sx is not even separable as a subset of ℓ∞, much less compact.

(b) Every compact subset of c0 is contained in some set Sx with x ∈ c0.

Locally compact spaces

Roughly speaking, a space can fail to be compact for either of two reasons: it can be
“too big at infinity”, or it can be “too big locally”.

Example 1: Discrete metric spaces. It is easy to see that a discrete metric space is
compact if and only if it is finite (why?). So any infinite discrete metric space is necessarily
noncompact. The reason is that the space is “too big at infinity”: any sequence that “runs
off to infinity” cannot have a convergent subsequence.

Note that this applies not only to discrete metric spaces in the narrow sense of Example 1
of Handout #1 (i.e. sets equipped with the 0–1 metric), but also to metric spaces that are
topologically equivalent to such a space, i.e. those in which every set is open (and hence also
closed). This includes, for instance, the natural numbers N and the integers Z equipped with
the usual metric d(x, y) = |x − y| that they inherit as subspaces of R.

Of course, any space that contains an infinite discrete metric space as a closed subspace
is also necessarily noncompact (why?). This includes, for instance, R.

Example 2: The closed unit ball in ℓ∞, c0, ℓ1 or ℓ2. We have seen that the closed
unit ball in ℓ∞, c0, ℓ1 or ℓ2 is noncompact. (Actually this is true for the closed unit ball in
any infinite-dimensional normed linear space, but we have not yet proven this.) Here the
problem is that the space is “too big locally”: there are “too many directions” in which one
can go away from a given point.

It is of interest to distinguish between these two ways that a space can fail to be compact,
and in particular to define a class of metric spaces that “look locally like compact spaces”
even if globally they fail to be compact. So let us say that a metric space X is locally
compact if, for every point x ∈ X, there exists a compact neighborhood of x in X. For
instance, any discrete space is locally compact (why?); the spaces R and Rn are also locally
compact (why?). On the other hand, it follows from our results ℓ∞, c0, ℓ1 and ℓ2 are not
locally compact (why?).

I will not develop here the basic facts about locally compact metric spaces, but will
instead refer you to Dieudonné, Section III.18. Here, without proof, are the main useful
facts:
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Lemma 2.11 Let A be a compact set in a locally compact metric space X. Then there exists
an r > 0 such that the r-neighborhood

Vr(A) = {x ∈ X: d(x, A) < r} (2.9)

(which is indeed an open neighborhood of A, see Proposition 1.13 of Handout #1) is relatively
compact (i.e. has compact closure) in X.

And using this, we can characterize the locally compact metric spaces which, though they
are not “essentially finite at infinity” (i.e. compact), are nevertheless “essentially countable
at infinity”:

Theorem 2.12 Let X be a locally compact metric space. Then the following are equivalent:

(a) X is separable.

(b) X is σ-compact, i.e. X can be written as a countable union of compact subsets.

(c) X can be written as the union of an increasing sequence (Un) of open relatively compact
subsets (i.e. open subsets whose closures are compact) satisfying Un ⊂ Un+1 for all n.
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