
MATHEMATICS 3103 (Functional Analysis)
YEAR 2009–2010, TERM 2

HANDOUT #5: SPACES OF CONTINUOUS FUNCTIONS

The most important spaces in applications of functional analysis, after the Hilbert spaces,
are the spaces C(X) of bounded continuous functions on a metric space X (equipped with
the sup norm). We have already proven the most important fact about C(X), namely that
it is complete (hence a Banach space). Here we would like to develop some additional useful
properties of the spaces C(X), especially in the case where X is compact .

Separation and extension theorems

The first question one should ask, when introducing a space F of functions on some
set X, is whether there are “enough” functions in the space F . What is “enough”? Well,
there are various notions, but at a minimum one would like the functions in F to separate
points of X: that is, for each pair x, y ∈ X with x 6= y, there should exist f ∈ F such
that f(x) 6= f(y).1 When F is the space C(X) of bounded continuous functions on a metric
space X, we can prove more: not only do the bounded continuous functions separate points
of X, they separate disjoint closed sets of X. (This of course includes the property of
separating points, because every one-point set is closed.)

Theorem 5.1 (Urysohn’s lemma for metric spaces) Let A and B be disjoint nonempty
closed sets in a metric space X. Then there exists a function f ∈ C(X) such that f = 1
on A, f = 0 on B, and 0 < f < 1 on X \ (A ∪ B).

Proof. Let f(x) = d(x, B)/[d(x, A)+d(x, B)]. I leave it to you to prove that f is continuous
and has the needed properties. �

Remark. If you have studied General Topology, you will know that there are a variety
of separation properties that a topological space can possess (or not possess): Hausdorff,
regular, completely regular, normal, . . . .2 The foregoing theorem shows that metric spaces
are as well behaved, in the sense of separation properties, as a topological space can possibly
be: namely, they are perfectly normal , i.e. two disjoint closed sets can be precisely separated
by a continuous function in the sense given above. A slightly larger class of topological
spaces is given by the normal spaces: in these, two disjoint closed sets can be separated by a
continuous function but not necessarily precisely, i.e. there exists a function f ∈ C(X) such
that f = 1 on A, f = 0 on B, and 0 ≤ f ≤ 1 (non-strict inequality!) on X \ (A ∪ B). �

Here is a related and extremely useful property:

1For instance, we posed a question of this type two weeks ago, for the case when F is the space X∗

of continuous linear functionals on a normed linear space X . Next week we will answer this question
affirmatively, using the Hahn–Banach theorem: the continuous linear functionals do separate points of X .

2See, for instance, http://en.wikipedia.org/wiki/Separation_axiom
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Theorem 5.2 (Tietze extension theorem for metric spaces) Let A be a closed subset
of a metric space X, and let f : A → [a, b] ⊂ R be a bounded continuous function. Then
there exists a continuous function g: X → [a, b] that extends f (i.e. g � A = f).

Since we can always take a = inf
x∈A

f(x) and b = sup
x∈A

f(x), this result says that we can

extend f continuously to all of X without increasing its upper bound or decreasing its lower
bound.

Proof. Without loss of generality we can assume that [a, b] = [−1, 1] (why?). Now define
subsets B, C ⊆ A by B = {x ∈ A: f(x) ≤ − 1

3
} and C = {x ∈ A: f(x) ≥ 1

3
}. By Urysohn’s

lemma there is a continuous function f1: X → R that takes the value − 1
3

on B and 1
3

on
C and satisfies |f1(x)| ≤ 1

3
for all x ∈ X. By construction |f(x) − f1(x)| ≤ 2

3
for all x ∈ A

(why?).
Now apply the same construction to the function f −f1, dividing the interval [− 2

3
, 2

3
] into

thirds: that is, let B2 = {x ∈ A: f(x) − f1(x) ≤ −2
9
} and C2 = {x ∈ A: f(x) − f1(x) ≥ 2

9
},

and use Urysohn’s lemma to obtain a continuous function f2: X → R that takes the value
−2

9
on B2 and 2

9
on C2 and satisfies |f2(x)| ≤ 2

9
for all x ∈ X; then |f(x)−f1(x)−f2(x)| ≤ 4

9

for all x ∈ A (why?).
Proceeding inductively, we construct a continuous function fn: X → R such that |fn(x)| ≤

2n−1/3n for all x ∈ X and |f(x) −
n
∑

i=1

fi(x)| ≤ 2n/3n for all x ∈ A (why?).

It follows from the bound ‖fn‖∞ ≤ 2n−1/3n that the series
∞
∑

n=1

fn is uniformly summable

to a continuous (why?) function g: X → R satisfying ‖g‖∞ ≤ 1 (why?). Moreover, g
coincides with f on A (why?). �

Remarks. 1. Note that Urysohn’s lemma (but with the non-strict inequality 0 ≤ f ≤ 1
on X \ (A ∪ B)) is a special case of the Tietze extension theorem (why?).

2. For a different proof of the Tietze extension theorem for metric spaces, see Dieudonné,
Section IV.5: he gives an explicit formula, using the distance function d, for an extension
function g. But the proof given here (which is the standard proof given in most books) has
the advantage that it extends immediately to normal topological spaces, since all it uses is
Urysohn’s lemma (with non-strict inequality).

3. In Problem 1 of Problem Set #5, I will ask you to prove a slight strengthening of this
result, in two directions: firstly, to allow unbounded continuous functions f ; and secondly,
to show that if f is bounded above (resp. below) but does not actually attain this upper
(resp. lower) bound, then g can be chosen so that it does not attain this bound either.

Dini’s theorem

The example of the functions fn(x) = xn on the space [0, 1] shows that the limit of a
pointwise convergent sequence of continuous functions need not be continuous — not even
if the sequence is monotone (e.g. here it is decreasing: f1 ≥ f2 ≥ f3 ≥ . . .) and the space is
compact.

But if we assume that the limit is continuous, then under certain conditions we can
guarantee that the convergence is uniform:
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Theorem 5.3 (Dini’s theorem) Let X be a compact metric space. Let (fn) be a mono-
tone (i.e. increasing or decreasing) sequence of real-valued continuous functions that con-
verges pointwise to a continuous function g. Then (fn) converges uniformly to g, i.e.
‖fn − g‖∞ → 0.

Proof. Suppose that (fn) is decreasing, i.e. f1 ≥ f2 ≥ f3 ≥ . . . (the increasing case
can obviously be handled by replacing fn by −fn and g by −g). Choose ε > 0, and let
Un = {x ∈ X: fn(x) − g(x) < ε}. Since fn and g are continuous, Un is open; and note
that U1 ⊆ U2 ⊆ U3 ⊆ . . . because the sequence (fn) is decreasing. Furthermore, the sets
Un together cover X (why?). So, by compactness of X, there exists a finite subcovering
{Un1

, . . . , Unk
}. But, setting N = max(n1, . . . , nk), this means that UN = X (why?). It

follows that for all n ≥ N we have g(x) ≤ fn(x) ≤ fN (x) < g(x) + ε for all x ∈ X. Since
this holds for arbitrary ε > 0, we have proven that the sequence (fn) converges uniformly to
g. �

You should convince yourself by simple examples that all three hypotheses of Dini’s
theorem (compactness of X, monotonicity of convergence, continuity of the limit function)
are needed: with any two of the three, a counterexample can be found.

In Problem 3 of Problem Set #5, I will ask you to prove a slight generalization: if (fn)
is a decreasing sequence of upper semicontinuous real-valued functions on a compact metric
space X that converges pointwise to a lower semicontinuous function g, then the convergence
is uniform.

The Stone–Weierstrass theorem

One of the most important results in real analysis is the Weierstrass approximation
theorem3, which states that any real-valued continuous function f on a closed bounded
interval [a, b] of the real line can be uniformly approximated by polynomials, i.e. for every
ε > 0 there exists a polynomial P such that ‖f − P‖∞ < ε. Otherwise put, the polynomials
are dense in the space C[a, b] equipped with the sup norm. Not surprisingly, a similar result
holds for continuous functions on closed bounded subsets A of Rn: they can be uniformly
approximated by multivariate polynomials in the coordinates x1, . . . , xn.

The Stone–Weierstrass theorem4 is a vast extension of all these results. To begin
with, the domain [a, b] ⊂ R or A ⊂ Rn is replaced by an arbitrary compact metric space X.
But what, in this generality, should replace the polynomials? The answer is obtained, not by
trying to find any unique family of functions to replace the polynomials, but rather by asking
what is the fundamental property possessed by the polynomials. The key property is that
the polynomials form an algebra: that is, they are closed not only under the vector-space
operations (pointwise addition, and multiplication by scalars) but also under pointwise mul-
tiplication, i.e. the product of two polynomials is again a polynomial. The Stone–Weierstrass
theorem shows that if A is any algebra of continuous functions on a compact metric space X

3Proven by the German mathematician Karl Weierstrass (1815–1897) in 1885. Weierstrass was one of
the key founders of modern analysis.

4Proven by the American mathematician Marshall Stone (1903–1989) in 1937.
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that contains the constant functions and separates points of X, then A is dense in the space
C(X) equipped with the sup norm.

Theorem 5.4 (Stone–Weierstrass theorem) Let X be a compact metric space, and let
A be any algebra of real-valued continuous functions on X that contains the constant func-
tions and separates points of X. Then A is dense in C(X).

Before beginning the proof, it is useful to make some remarks about algebras of functions.
First of all, for any metric space X (not necessarily compact), the space C(X) of bounded
continuous functions on X is an algebra, since the pointwise product of two bounded contin-
uous functions is bounded and continuous. Moreover, we have ‖fg‖∞ ≤ ‖f‖∞‖g‖∞ (why?).5

It easily follows from this that the bilinear mapping (f, g) 7→ fg is continuous (why?). And
it easily follows from this that if A is any subalgebra of C(X) [i.e. any vector subspace of
C(X) that is also closed under pointwise multiplication], then its closure A (in the sup norm)
is again a subalgebra.

In the course of the proof of the Stone–Weierstrass theorem, we will actually prove also
a variant result that is interesting in its own right: it comes from the fact that the space
C(X) is not only an algebra but is also a lattice,6 namely if f and g are bounded continuous
functions then so are the functions f ∨ g and f ∧ g, where

(f ∨ g)(x) = max[f(x), g(x)] (5.1a)

(f ∧ g)(x) = min[f(x), g(x)] (5.1b)

More generally, a subset L ⊆ C(X) is called a lattice (of bounded continuous functions on
X) if f, g ∈ L implies f ∨ g ∈ L and f ∧ g ∈ L. A subset L ⊆ C(X) is called a vector
lattice (of bounded continuous functions on X) if it is both a linear subspace and a lattice
(i.e. is closed under multiplication by scalars, addition, ∨ and ∧).

Theorem 5.5 (Stone–Weierstrass theorem, lattice version) Let X be a compact met-
ric space, and let L be any vector lattice of continuous functions on X that contains the
constant functions and separates points of X. Then L is dense in C(X).

We will actually prove a bit more than this: namely, we will not require that f, g ∈ L
imply f + g ∈ L, but will only require this when g is a constant function; and we will prove
a slightly strengthened version of the uniform approximation property, which shows that the
approximation can always be from above.

5A Banach space equipped with a bilinear multiplication satisfying ‖xy‖ ≤ ‖x‖ ‖y‖ is called a Banach
algebra. The space C(X) under pointwise multiplication is thus a fundamental example of a commutative

Banach algebra. On the other hand, the space B(X) of bounded linear operators on a Banach space X is a
fundamental example of a noncommutative (when dim X > 1) Banach algebra.

6Warning: Here I am using the word “lattice” in the sense that this word is used in algebra and functional
analysis, namely, as an ordered set in which every pair of elements has a least upper bound and a greatest
lower bound. This has nothing whatsoever to do with the meaning of “lattice” in geometry and solid-state
physics, namely as (for example) a discrete subset of Rn that is invariant under translation by some linearly
independent vectors a1, . . . , an. It is unfortunate that English uses the same word for both concepts (a little
like the different meanings of the word “field” in algebra and in vector calculus). Other languages avoid this
confusion: e.g. French denotes the first concept by treillis and the second by réseau.
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Theorem 5.6 (Stone–Weierstrass theorem, slightly strengthened lattice version)
Let X be a compact metric space, and let L be any nonempty lattice of continuous functions
on X that separates points of X and is closed under multiplication by scalars and addition
of constants (in short, f ∈ L and α, β ∈ R imply αf +β ∈ L).7 Then for any f ∈ C(X) and
any ε > 0, there exists g ∈ L such that f ≤ g ≤ f + ε.

We will prove this using a sequence of lemmas. The first lemma is a generalization of
Dini’s theorem:

Lemma 5.7 (Dini’s theorem for lattices) Let L be a lattice of continuous real-valued
functions on a compact metric space X, and suppose that the function g defined by

g(x) = inf
f∈L

f(x) (5.2)

is continuous. Then, for each ε > 0, there exists h ∈ L such that g ≤ h ≤ g + ε.

Do you see how this contains Dini’s theorem as a special case? Just take L = {f1, f2, . . .}.

Proof of Lemma 5.7. The proof is a minor modification of the proof of Dini’s theorem.
Choose ε > 0, and for each f ∈ L let Uf = {x ∈ X: f(x) − g(x) < ε}. Since f and
g are continuous, Uf is open. Furthermore, the sets Uf together cover X (why?). So, by
compactness of X, there exists a finite subcovering {Uf1

, . . . , Ufk
}. Then h = f1∧f2∧ . . .∧fk

does what is needed (why?). �

Remark. Note that this proof did not really use that L is a lattice, but only that it is
a ∧-semilattice, i.e. f, g ∈ L implies f ∧ g ∈ L.

The second lemma is almost trivial but is worth stating explicitly:

Lemma 5.8 Let F be any family of real-valued functions on X that separates points of X
and is closed under multiplication by scalars and addition of constants. Then for every pair
of distinct points x, y ∈ X and every pair of real numbers a, b, there exists f ∈ F such that
f(x) = a and f(y) = b.

Proof. Since F separates points of X, we can find g ∈ F such that g(x) 6= g(y). Then

f =
a − b

g(x) − g(y)
g +

bg(x) − ag(y)

g(x) − g(y)
(5.3)

has all the needed properties (why?). �

And one last lemma:

7Note that this implies in particular that L contains the constant functions, by taking α = 0 and observing
that L is nonempty (why do I need the latter?).

By the way, why did I require explicitly that L be nonempty? If X has at least two points, then the
hypothesis that L separates points of X implies that L has to be nonempty. But if X has only one point,
then L = ∅ satisfies all the hypotheses of the theorem but is not dense in C(X)! Sometimes it is a pain to
have to worry about all these trivial degenerate cases . . .
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Lemma 5.9 Let X be a compact metric space, and let L be a nonempty lattice of continuous
functions on X that separates points of X and is closed under multiplication by scalars and
addition of constants. Then for any closed subset B ⊂ X, any point p ∈ X \B, and any real
numbers a, b, there exists a function g ∈ L such that g ≥ a, g(p) = a and g > b on B.

Proof. By Lemma 5.8 we can choose, for each x ∈ B, a function gx ∈ L such that gx(p) = a
and gx(x) = b+1. Now let Ux = {y ∈ X: gx(y) > b}. Then the sets {Ux}x∈B cover B (why?);
and since B is compact (why?), we can choose a finite subcovering {Ux1

, . . . , Uxn
}. Then

g = gx1
∨ . . . ∨ gxn

∨ a has all the needed properties (why?). �

Remark. It appears this proof did not really use that L is a lattice, but only that it is
a ∨-semilattice, i.e. f, g ∈ L implies f ∨ g ∈ L. But since L is closed under multiplication
by scalars (including the scalar −1) and f ∧ g = −(−f ∨ −g), it turns out that L has to
be a lattice after all. And we did use the closure under multiplication by scalars (including
negative scalars) in the proof of Lemma 5.8.

We are now ready to prove the lattice version of the Stone–Weierstrass theorem:

Proof of the slightly strengthened lattice version of the Stone–Weierstrass

theorem. Given f ∈ C(X), let us define L≥f = {g ∈ L: g ≥ f}. Note that L≥f is also a
lattice (why?). I claim that

f(p) = inf
g∈L≥f

g(p) (5.4)

for all p ∈ X. If we can prove this, we are done, because the desired conclusion then follows
immediately from Lemma 5.7.

To prove (5.4), fix any p ∈ X and choose any δ > 0. Since f is continuous, the set

B = {x ∈ X: f(x) ≥ f(p) + δ} (5.5)

is closed. Since X is compact, f is bounded on X, say by M . By Lemma 5.9 with a = f(p)+δ
and b = M , we can find g ∈ L such that g ≥ f(p) + δ, g(p) = f(p) + δ and g > M on B.
Then g > M ≥ f on B and g ≥ f(p) + δ > f on X \ B (why?), hence g > f everywhere.
It follows that g ∈ L≥f . On the other hand, we have g(p) ≤ f(p) + δ (actually equality, but
we don’t need this). Since δ > 0 was arbitrary, we have proven (5.4). �

To prove the standard (i.e. algebra) version of the Stone–Weierstrass theorem, we need
a lemma that allows us to approximate lattices by algebras, which comes down to approxi-
mating the absolute-value function by polynomials:

Lemma 5.10 Given ε > 0, there is a real polynomial Pε in one variable such that

sup
−1≤s≤1

∣

∣

∣
|s| − Pε(s)

∣

∣

∣
< ε . (5.6)

This is of course a special case of the Weierstrass approximation theorem for the interval
[−1, 1], but let us give two direct elementary proofs:
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First proof of Lemma 5.10. Let
∞
∑

n=0

antn be the binomial series for (1 − t)1/2, namely

a0 = 1, a1 = −1
2

and

an = −
(2n − 3)!!

2nn!
(5.7)

[recall that k!! = k(k − 2)(k − 4) · · ·1 for k odd]. It is a well-known fact that this series
converges uniformly to (1− t)1/2 for all t ∈ [0, 1] (and indeed for all complex t with |t| ≤ 1).8

Hence, given ε > 0, we can choose N so that

sup
0≤t≤1

|(1 − t)1/2 − QN (t)| < ε (5.8)

where QN(t) =
N
∑

n=0

antn. Then Pε(s) = QN (1− s2) has all the needed properties (why?). �

Second proof of Lemma 5.10. We shall construct a sequence (pn)∞n=1 of real polynomials
which in the interval [−1, 1] satisfy 0 = p1 ≤ p2 ≤ . . . and which converge uniformly to |s|.
We define the pn inductively, taking p1 = 0 and then

pn+1(s) = pn(s) + 1
2
[s2 − pn(s)2] . (5.9)

Let us prove by induction that pn+1(s) ≥ pn(s) and pn(s) ≤ |s| and for s ∈ [−1, 1]. From
the defining recursion (5.9) we see that the second result (for any given n) implies the first
(for the same n). On the other hand,

|s| − pn+1(s) = |s| − pn(s) − 1
2
[s2 − pn(s)2]

= [|s| − pn(s)]
(

1 − 1
2
[|s| + pn(s)]

)

(5.10)

and from pn(s) ≤ |s| we deduce 1
2
[|s| + pn(s)] ≤ |s| ≤ 1, so pn(s) ≤ |s| implies pn+1(s) ≤ |s|.

Thus, for each s ∈ [−1, 1] the sequence (pn(s)) is increasing and bounded above (by |s|),
hence converges to a limit P (s). But passing to the limit n → ∞ in the recursion (5.9) we see
that s2−P (s)2 = 0; and since P (s) ≥ 0 this means that P (s) = |s|. Since the absolute-value
function is continuous and the sequence (pn) is increasing, Dini’s theorem shows that the

8For a proof, see e.g. http://en.wikipedia.org/wiki/Binomial_series For what it’s worth, the uni-
form convergence for t ∈ [0, 1] follows from the pointwise convergence together with Dini’s theorem, since
an < 0 for all n ≥ 1.
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convergence is uniform.9 �

Corollary 5.11 Let X be any metric space (not necessarily compact) and let A be any
closed subalgebra of C(X) that contains the constant functions. Then A is a vector lattice.

Proof. First consider any f ∈ A with ‖f‖∞ ≤ 1. Then, given ε > 0 we have ‖ |f | −
Pε(f) ‖∞ ≤ ε where Pε is the polynomial given by Lemma 5.10 (why? why do we have only
non-strict inequality?). Since A is an algebra containing the constant functions, we have
Pε(f) ∈ A (why? where did we use the fact that A contains the constant functions?). Since
this holds for every ε > 0, and A is closed, we conclude that |f | ∈ A.

Now consider any nonzero f ∈ A. Then f/‖f‖∞ belongs to A (why?) and has sup
norm 1, so |f |/‖f‖∞ belongs to A by what has just been said, hence |f | ∈ A as well (why?).
Thus A contains the absolute value of each function that is in A. But since

f ∨ g = 1
2
(f + g) + 1

2
|f − g| (5.11a)

f ∧ g = 1
2
(f + g) − 1

2
|f − g| (5.11b)

we conclude that A is a lattice, hence a vector lattice. �

9The uniform convergence can also be proven by an explicit bound. Since pn(s) ≥ 0, we have from (5.10)

|s| − pn+1(s) ≤ (1 − 1

2
|s|) [|s| − pn(s)]

and hence
|s| − pn(s) ≤ (1 − 1

2
|s|)n [|s| − p0(s)] = |s| (1 − 1

2
|s|)n .

But simple calculus shows that for n ≥ 1 we have

sup
−1≤s≤1

|s| (1 − 1

2
|s|)n =

2 nn

(n + 1)n+1
≤

2

n + 1

[achieved at |s| = 2/(n + 1)], which tends to zero as n → ∞.
Note, by the way, that this bound gives (up to a constant factor) the correct rate of convergence, because

we also have from (5.10) [using pn(s) ≤ |s|]

|s| − pn(s) ≥ |s| (1 − |s|)n

and

sup
−1≤s≤1

|s| (1 − |s|)n =
nn

(n + 1)n+1
≥

1

e(n + 1)

(why?) [achieved at |s| = 1/(n + 1)].
It is relevant to note that the slowest convergence of pn(s) to |s| is obtained near the point s = 0 where the

function |s| is nonanalytic. This is not an accident. Indeed, the Russian mathematician Sergei Natanovich
Bernstein (1880–1968) proved in 1912 that a function f on [−1, 1] can be approximated by a polynomial of
degree n with an error that decreases exponentially in n if and only if f can be extended to an analytic

function in some complex neighborhood of [−1, 1]. Bernstein furthermore proved that it is not possible to
approximate |s| in [−1, 1] by a polynomial of degree n with an approximation better than order 1/n. These
results belong to the area of analysis known as approximation theory . A nice introduction to approximation
theory can be found in Allan Pinkus, Negative theorems in approximation theory, Amer. Math. Monthly

110, 900–911 (2003).
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The proof of the Stone–Weierstrass theorem is now a virtual triviality:

Proof of the Stone–Weierstrass theorem. As previously observed, the closure A
(in the sup norm) is again a subalgebra; and by Corollary 5.11 it is a lattice. It then follows
from the lattice version of the Stone–Weierstrass theorem that A is dense in C(X); but since
A is closed, this means that A = C(X). �

Thus far we have been considering the space C(X) of real-valued continuous functions
on X. What about the space CC(X) of complex-valued continuous functions on X? Here it
is false that an algebra that separates points and contains the constant functions must be
dense in CC(X): for instance, if X is the closed unit disc in the complex plane and A is the
algebra of polynomials in the complex variable z, then all the elements of A will be analytic
functions when restricted to the open unit disc; so A will certainly not contain, for instance,
the function f(z) = z. Instead we have the following weaker result:

Theorem 5.12 (Stone–Weierstrass theorem, complex version) Let X be a compact
metric space, and let A be any algebra of complex-valued continuous functions on X that
contains the constant functions, separates points of X, and is invariant under complex con-
jugation (i.e. f ∈ A implies f ∈ A). Then A is dense in CC(X).

Proof. The hypothesis implies that, for every f ∈ A, the functions Re f = (f + f)/2
and Im f = (f − f)/2i also belong to A. Therefore, if A0 is the (real) subalgebra of A
consisting of real-valued functions, we can conclude that A0 separates points of X (why?)
and contains the (real) constant functions. So the Stone–Weierstrass theorem implies that
A0 is dense in CR(X). But since A = A0 + iA0 (why?), we conclude that A is dense in
CC(X) = CR(X) + iCR(X). �

Let us now give some classic applications of the Stone–Weierstrass theorem. The first
one is the original Weierstrass approximation theorem for compact subsets of Rn:

Theorem 5.13 (Weierstrass approximation theorem for compact subsets of Rn)
Any real-valued continuous function on a closed bounded subset X ⊂ Rn is the limit of a
sequence of polynomials that converges uniformly on X.

Take now for X the unit circle in R2, parametrized by the angle θ, so that the continuous
functions on X can be identified with the continuous functions on R that are periodic of
period 2π, or equivalently with the continuous functions on [−π, π] that satisfy f(−π) =
f(π). And take for A the (complex) algebra generated by the functions 1, eiθ and e−iθ:
that is, the elements of A are the trigonometric polynomials

∑N
n=−N aneinθ with coefficients

an ∈ C. Then the complex version of the Stone–Weierstrass theorem gives:

Theorem 5.14 (Weierstrass approximation theorem for trigonometric polynomials)
Any complex-valued continuous function on R that is periodic of period 2π is the limit of a
sequence of trigonometric polynomials that converges uniformly on R.
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Alternatively, we could have applied the real version of the Stone–Weierstrass theo-
rem to the (real) algebra A0 generated by the functions 1, cos θ and sin θ: standard trig
identities show that the elements of A0 are precisely the real trigonometric polynomials
∑N

n=0 an cos(nθ) +
∑N

n=1 bn sin(nθ) with coefficients an, bn ∈ R.
Note also that the only continuous functions on R that can be uniformly approximated

(or even pointwise approximated) by trigonometric polynomials are those that are periodic of
period 2π, because the trigonometric polynomials are of course periodic and the periodicity
survives uniform (or even pointwise) limits. On the other hand, in the L2 norm the situation
is very different:

Theorem 5.15 In the space C[−π, π] equipped with the L2 norm, the trigonometric polyno-
mials are dense. (This is an incomplete inner-product space, but it follows immediately that
the trigonometric polynomials are also dense in its completion, which is the space L2[−π, π].)

Proof. The Weierstrass approximation theorem for trigonometric polynomials tells us that
the trigonometric polynomials are dense, in the sup norm, in the linear subspace Cper[−π, π] (

C[−π, π] defined by

Cper[−π, π] = {f ∈ C[−π, π]: f(−π) = f(π)} . (5.12)

Since the L2 norm is weaker than the sup norm, it follows that the trigonometric polynomials
are also dense, in the L2 norm, in Cper[−π, π]. So it suffices to show that Cper[−π, π] is dense in
C[−π, π] in the L2 norm. To do this, consider any f ∈ C[−π, π], and define gn ∈ Cper[−π, π]
by redefining f in a small neighborhood [π − 1/n, π] so as to make it periodic (and still
continuous):

gn(x) =

{

f(x) for −π ≤ x ≤ π − 1/n
f(π − 1/n) + n[f(−π) − f(π − 1/n)](x − π + 1/n) for π − 1/n ≤ x ≤ π

Then gn coincides with f on [−π, π−1/n] and differs from f by at most 2‖f‖∞ on [π−1/n, π],
so we have

‖f − gn‖
2
2 =

∫ π

−π

|f(x) − gn(x)|2 dx ≤ (1/n) 4‖f‖2
∞ ,

which tends to zero as n → ∞. Thus gn → f in L2 norm, which proves that Cper[−π, π] is
dense in C[−π, π] in the L2 norm. �

In the first week of this course we posed (but did not solve) the question of the separability
of the spaces C(X) [equipped as usual with the sup norm]. We can now give the answer.
When X is a closed bounded interval [a, b] of the real line, or more generally a closed bounded
subset of Rn, then the separability of C(X) is a consequence of the Weierstrass approximation
theorem: indeed, the polynomials with rational coefficients form a countable (why?) dense
(why?) set in C(X). For a general compact metric space X, we can use the Stone–Weierstrass
theorem to prove the separability of C(X):

Theorem 5.16 If X is a compact metric space, the space C(X) is separable.
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Proof. Recall from Problem 8 of Problem Set #1 that a collection G of nonempty open
sets of X is called a basis for the open sets of X if every nonempty open set of X is the
union of some subcollection of the collection G; and recall the theorem that a metric space
X is separable if and only if there exists a countable basis for the open sets of X. Since X is
compact, it is separable, so let (Un) be a countable basis for the open sets of X, and define
fn(x) = d(x, X \ Un). The functions fn are continuous (why?) and bounded (why?). The
monomials fα1

1 · · · fαn
n with n ∈ N and α1, . . . , αn ∈ N form a countable family F (why?),

and the vector space A generated by the family F is the subalgebra of C(X) generated by
the (fn). If we prove that A is dense in C(X), we will be done, because this implies that
F is total in C(X), and hence by Problem 8(a) of Problem Set #3 that C(X) is separable.
Now A obviously contains the constant functions, so we need only check that A separates
points of X. But if x 6= y, then there is a Un such that x ∈ Un and y /∈ Un (why?), hence
gn(x) 6= 0 (why?) and gn(y) = 0. �

What if X is noncompact? In Proposition 1.18 we proved that `∞ = C(N) is nonseparable;
and in Problem 5 of Problem Set #1 you used a similar technique to show that C(R) is
nonseparable. In Problem 2(b) of Problem Set #5 you are asked to extend this method to
show that C(X) is nonseparable whenever X is noncompact.

Compactness in C(X) and the Arzelà–Ascoli theorem

In Handout #2 and Problems 3 and 4 of Problem Set #2, we discussed some criteria for
compactness in the sequence spaces `p and c0: more precisely, we found sufficient conditions
for compactness in `1 and `2 (the obvious analogues would work in `p for any p < ∞) and
a necessary and sufficient condition for compactness in c0. Now we would like to discuss
criteria for compactness in the space C(X) [equipped as usual with the sup norm] when X
is a compact metric space.

We begin by discussing the key new notion, which is the equicontinuity of a family of
functions. First recall that if (X, dX) and (Y, dY ) are two metric spaces, then a mapping
f : X → Y is called

• continuous at x0 if for each ε > 0, there exists δ > 0 (depending of course on ε) such
that, for all x′ ∈ X, dX(x0, x

′) < δ implies dY (f(x0), f(x′)) < ε;

• continuous if for each ε > 0 and each x ∈ X, there exists δ > 0 (depending on ε and
x) such that, for all x′ ∈ X, dX(x, x′) < δ implies dY (f(x), f(x′)) < ε;

• uniformly continuous if for each ε > 0, there exists δ > 0 (depending on ε) such
that, for all x, x′ ∈ X, dX(x, x′) < δ implies dY (f(x), f(x′)) < ε.

Now suppose that we have a family F of mappings from X to Y . If each function of the
family is continuous at x0 (or continuous, or uniformly continuous), then for each f ∈ F we
can say that “for each ε > 0 there exists δ > 0 such that . . . ” but the δ might of course
depend on the specific function f ∈ F being considered. The family is called equicontinuous
if the δ can be chosen to be uniform for all f ∈ F . More precisely, a family F of mappings
from X to Y is called

11



• equicontinuous at x0 if for each ε > 0, there exists δ > 0 (depending on ε) such
that, for all x′ ∈ X and all f ∈ F , dX(x0, x

′) < δ implies dY (f(x0), f(x′)) < ε;

• equicontinuous if for each ε > 0 and each x ∈ X, there exists δ > 0 (depending on ε
and x) such that, for all x′ ∈ X and all f ∈ F , dX(x, x′) < δ implies dY (f(x), f(x′)) < ε;

• uniformly equicontinuous10 if for each ε > 0, there exists δ > 0 (depending on ε)
such that, for all x, x′ ∈ X and all f ∈ F , dX(x, x′) < δ implies dY (f(x), f(x′)) < ε.

Thus, equicontinuity at x0 for a family F implies in particular that each of the functions in
F is continuous at x0 (and likewise for the other two notions), but it is much stronger.

Of course, if F is a finite set of functions, each of which is continuous at x0, then F is
equicontinuous at x0 (and likewise for the other two notions). More generally, if F1, . . . ,Fk

is a finite collection of families, each of which is equicontinuous at x0, then their union
k
⋃

i=1

Fi

is also equicontinuous at x0 (and likewise for the other two notions).

Example 1. The family of functions (fn)∞n=0 on [0, 1] defined by fn(x) = xn is not
equicontinuous at x0 = 1 (why?).

Example 2. Let X and Y be an arbitrary pair of metric spaces. Fix α > 0 and M < ∞,
and consider the family Fα,M of functions f : X → Y defined by

Fα,M = {f : dY (f(x), f(x′)) ≤ M dX(x, x′)α for all x, x′ ∈ X} . (5.13)

Then Fα,M is uniformly equicontinuous (why?).
These are the Hölder-continuous functions of order α, with Hölder seminorm at

most M . If α = 1 they are the Lipschitz-continuous functions with Lipschitz seminorm
at most M . �

We can now state the fundamental criterion concerning compactness in C(X) where X
is a compact metric space:

Theorem 5.17 (Arzelà–Ascoli theorem)11 Let X be a compact metric space. Then:

(a) A subset F ⊂ C(X) is compact if and only if it is closed, bounded and equicontinuous.

(b) A subset F ⊂ C(X) is relatively compact (i.e. its closure is compact) if and only if it
is bounded and equicontinuous.

10A better term would probably be equi-(uniformly continuous), but this is unwieldy both to say and
to write.

11The sufficient condition for compactness was proven in 1883 by the Italian mathematician Giulio Ascoli
(1843–1896). The necessary condition was proven in 1895 by another Italian, Cesare Arzelà (1874–1912).
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Note that here boundedness of a set F ⊂ C(X) means boundedness in sup norm, i.e.
there exists M < ∞ such that ‖f‖∞ ≤ M for all f ∈ F , or equivalently |f(x)| ≤ M for all
f ∈ F and all x ∈ X. This is sometimes called “uniform boundedness”, where “uniform”
means both “uniform in x” and “uniform in f”.

As we shall see, the formulations (a) and (b) of the Arzelà–Ascoli theorem are almost
trivially interderivable. Some books prefer to state one or the other; I prefer to state both,
as both are useful.

We shall prove the Arzelà–Ascoli theorem by a sequence of lemmas.
First, if F is a family of mappings from metric space X to a metric space Y , let us

denote by F
(ptwise)

the “closure” of F with respect to pointwise convergence, i.e. the set of
all functions f : X → Y for which there exists a sequence (fn)∞n=1 in F such that f(x) =
lim

n→∞
fn(x) for all x ∈ X.12 We then have:

Lemma 5.18 Let X and Y be metric spaces, and let F be a family of mappings from X
to Y that is equicontinuous at x0 (or equicontinuous, or uniformly equicontinuous). Then

F
(ptwise)

is likewise equicontinuous at x0 (or equicontinuous, or uniformly equicontinuous).

In particular, each f ∈ F
(ptwise)

is continuous at x0 (or continuous, or uniformly continuous).

Proof. Let us prove the version for equicontinuity at x0 (the others are similar). Let

(fn)∞n=1 be a sequence in F converging pointwise to a function f ∈ F
(ptwise)

. By hypothesis,
for each ε > 0 there exists δ > 0 (depending on ε) such that, for all x′ ∈ X and all n,
dX(x0, x

′) < δ implies dY (fn(x0), fn(x
′)) < ε. But now we can take the limit n → ∞ in this

latter inequality to conclude that dY (f(x0), f(x′)) ≤ ε. This implies that every f ∈ F
(ptwise)

satisfies the continuity condition with the same choice of δ = δ(ε) that works for F [except
that we now have non-strict instead of strict inequality, but that is no harm]. This proves

that the family F
(ptwise)

is equicontinuous at x0. �

From this lemma we can already see that forms (a) and (b) of the Arzelà–Ascoli theorem
are trivially interderivable. Indeed, if a subset F is bounded (in sup norm), then so is its
(sup-norm) closure F ; and if a subset F is equicontinuous, then Lemma 5.18 shows that its

sup-norm closure F is equicontinuous as well (since even the potentially larger set F
(ptwise)

is equicontinuous). You should now complete the proof that (a) implies (b), and vice versa.

Lemma 5.19 Let X and Y be metric spaces, with Y complete, and let (fn) be an equicon-
tinuous sequence of mappings from X to Y that is pointwise convergent on a dense subset
D ⊂ X. Then (fn) is pointwise convergent on all of X, and the limit function is continuous.

Proof. Consider a point x ∈ X. Then, given ε > 0 there exists δ > 0 (depending on x
and ε) such that

dY (fn(x), fn(x′)) < ε for all n whenever dX(x, x′) < δ . (5.14)

12This is not a standard notation, but I think it is useful here.
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Since D is dense in X, there exists x′ ∈ D such that dX(x, x′) < δ. Now, by hypothesis the
sequence (fn(x′)) is convergent in Y , hence a Cauchy sequence, i.e. there exists an integer
N such that

dY (fm(x′), fn(x′)) < ε whenever m, n ≥ N . (5.15)

It follows by the triangle inequality that

dY (fm(x), fn(x)) ≤ dY (fm(x), fm(x′)) + dY (fm(x′), fn(x
′)) + dY (fn(x′), fn(x))

< 3ε whenever m, n ≥ N , (5.16)

which shows that (fn(x)) is a Cauchy sequence in Y . And since Y is complete, this means
that (fn(x)) is convergent.

The continuity of the limit function was already proven in Lemma 5.18. �

That was a typical “3ε argument”. Here is another:

Lemma 5.20 Let X and Y be metric spaces, with X compact, and let (fn) be an equicon-
tinuous sequence of mappings from X to Y that is pointwise convergent to a function f .
Then (fn) is uniformly convergent to f .

Proof. Choose ε > 0. By equicontinuity, for each x ∈ X there exists an open set Ux 3 x
such that dY (fn(x), fn(x′)) < ε for all n and all x′ ∈ Ux. From this it also follows that
dY (f(x), f(x′)) ≤ ε for all x′ ∈ Ux (why?).

By compactness of X, there is a finite subcollection {Ux1
, . . . , Uxk

} that covers X. Now
choose N large enough so that dY (fn(xi), f(xi)) < ε for all n ≥ N and 1 ≤ i ≤ k (why is
this possible?). Then for every x′ ∈ X there exists an index i (1 ≤ i ≤ k) such that x′ ∈ Uxi

,
and we have

dY (fn(x′), f(x′)) ≤ dY (fn(x′), fn(xi)) + dY (fn(xi), f(xi)) + dY (f(xi), f(x′))

< 3ε whenever n ≥ N . (5.17)

This shows that (fn) converges uniformly to f . �

Lemma 5.21 (diagonal argument) Let (fn) be a sequence of mappings from a countable
set S into a metric space Y , with the property that for each x ∈ S, every subsequence
of (fn(x)) has a convergent sub-subsequence. [This would hold, in particular, if the set
{fn(x)}n≥1 is relatively compact in Y for each x ∈ S.] Then there exists a subsequence (fni

)
that converges (pointwise) for all x ∈ S.

Proof. We discussed the “diagonal trick” in the solutions to Problem 2(b) of Problem
Set #2, but let us review it. The set S is either finite or countably infinite, so we enumerate it
as S = {x1, x2, . . .}. We now extract from the sequence (fn) a subsequence (fni

) [where n1 <
n2 < . . .] that converges at x1. We then extract from the subsequence (fni

) a sub-subsequence
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that converges at x2, and so forth. In general, we will introduce a two-dimensional array
(fi,j) of functions,

f0,1 f0,2 f0,3 f0,4 · · ·

f1,1 f1,2 f1,3 f1,4 · · ·

f2,1 f2,2 f2,3 f2,4 · · ·
...

...
...

...
. . .

where the zeroth row is the original sequence (i.e. f0,j = fj), the first row is the first chosen
subsequence (i.e. f1,j = fnj

), the second row is the chosen sub-subsequence, and so forth.
In general the ith row is a subsequence of the (i − 1)st row, chosen so that the sequence
converges when evaluated at xi. Since the ith row is in fact a subsequence of all the preceding
rows (why?), we conclude that in the ith row the sequence converges when evaluated at
x1, . . . , xi. If S is finite (say, S = {x1, x2, . . . , xN}), then the last (Nth) row of this array
gives the desired subsequence. If S is countably infinite, then we build an infinite array, and
the desired subsequence is given by the diagonal sequence fj,j. (Why does this work?) �

You should make sure you understand the logic behind the diagonal argument, as it is
frequently used in analysis.

We are now ready to prove the Arzelà–Ascoli theorem. We start with the “main” direction
of the theorem, proving for simplicity version (b), i.e. boundedness plus equicontinuity implies
relative compactness.

Proof of boundedness plus equicontinuity =⇒ relative compactness. Since
X is compact, it is separable, so choose a countable dense set D ⊂ X. Now consider any
sequence (fn) in F . Since F is bounded in sup norm, the set {fn(x)} is certainly bounded
for each x ∈ D, hence relatively compact in R. So by Lemma 5.21 there exists a subsequence
(fni

) that converges (pointwise) for all x ∈ D. Then by Lemma 5.19 the sequence (fni
) is

pointwise convergent on the whole space X, to a limit function f that is continuous. And
by Lemma 5.20 the convergence of (fni

) to f is uniform, i.e. fni
→ f in C(X). �

Remark. It is easy to see that the requirement of sup-norm boundedness of the family
F can be weakened to pointwise boundedness (i.e. the set {f(x): f ∈ F} is bounded in R

for each x ∈ X) or even pointwise boundedness on a dense subset D ⊂ X. Indeed, that
is all that this proof uses. (Of course, sup-norm boundedness then follows by invoking the
converse direction of the Arzelà–Ascoli theorem.) �

Now we prove the “converse” direction of the Arzelà–Ascoli theorem, once again in version
(b), i.e. relative compactness implies boundedness plus equicontinuity. Indeed, with no extra
work we will show uniform equicontinuity.

Proof of relative compactness =⇒ boundedness plus uniform equiconti-

nuity. Since F is compact, it is certainly bounded, hence F ⊆ F is bounded as well.
Moreover, F is totally bounded, i.e. for each ε > 0 we can choose a ε-net {f1, . . . , fm} ⊆ F .
Since each fi is uniformly continuous (why?) and the family is finite, there exists δ > 0 such
that

|fi(x) − fi(x
′)| < ε for all i whenever dX(x, x′) < δ (5.18)
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(how does this use the finiteness of the family?). Then, by definition of ε-net, for any f ∈ F
there exists an index i such that ‖f − fi‖∞ < ε. We then have

|f(x) − f(x′)| ≤ |f(x) − fi(x)| + |fi(x) − fi(x
′)| + |fi(x

′) − f(x′)|

< 3ε whenever dX(x, x′) < δ . (5.19)

Since this holds for all f ∈ F , we have proven that the family F is uniformly equicontinuous.
Hence so is F . �

Remark. In Problem 6 of Problem Set #5 you will prove that equicontinuity and
uniform equicontinuity are in fact equivalent properties whenever X is compact.

Example 2, revisited. Let X be a compact metric space and let Y = R. Fix α > 0
and M < ∞. Then the family

Fα,M = {f : |f(x) − f(x′)| ≤ MdX(x, x′)α for all x, x′ ∈ X} ⊆ C(X) (5.20)

is uniformly equicontinuous. This family is not bounded (why?), but the subfamily

Gα,M = {f : |f(x)| ≤ M and |f(x) − f(x′)| ≤ M dX(x, x′)α for all x, x′ ∈ X} (5.21)

is bounded (and of course still uniformly equicontinuous). Moreover, the family Gα,M is
closed as well (why?). It follows that Gα,M is a compact subset of C(X).

In particular, suppose that X is a closed interval [a, b] of the real line, and consider the
family of functions that are continuously differentiable on [a, b] with both f and f ′ bounded
in absolute value by M :

DM = {f ∈ C1[a, b]: |f(x)| ≤ M and |f ′(x)| ≤ M for all x ∈ X} . (5.22)

Then we have DM ⊂ G1,M (why?), so DM is a relatively compact subset of C(X). [With a
little extra work it can be shown that the closure of DM is precisely G1,M .]

In Problem 8 of Problem Set #5 you will apply this type of argument to prove some very
important theorems in complex analysis.
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