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Unifying Evolutionary Dynamics
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Darwinian evolution is based on three fundamental principles, reproduction, mutation and
selection, which describe how populations change over time and how new forms evolve out of
old ones. There are numerous mathematical descriptions of the resulting evolutionary
dynamics. In this paper, we show that apparently very different formulations are part of a
single unified framework. At the center of this framework is the equivalence between the
replicator–mutator equation and the Price equation. From these equations, we obtain as
special cases adaptive dynamics, evolutionary game dynamics, the Lotka-Volterra equation
of ecology and the quasispecies equation of molecular evolution.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

In 1906, W. F. R. Weldon, who invented the
field of biometrics, noted that Darwinian evolu-
tion was essentially a mathematical theory that
could only be tested using mathematical and
statistical techniques. The founding fathers of
evolutionary genetics, Fisher, Haldane and
Wright used mathematical models to generate a
synthesis between Mendelian genetics and Dar-
winian evolution. Kimura’s theory of neutral
evolution, Hamilton’s kin selection and May-
nard Smith’s evolutionary game theory are all
based on mathematical descriptions of evolu-
tionary dynamics. Concepts like fitness and
natural selection are best defined in terms of
mathematical equations. The perspective of this
paper is to show that apparently very different
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descriptions of evolutionary dynamics are part
of a single unified framework (Fig. 1). We
concentrate on deterministic dynamics, which
represent the core of evolutionary theory. We do
not consider stochastic, spatial or individual-
based approaches, which are mathematically
more diverse and hence less amenable to any
attempt of unification. Obviously, stochastic
approaches that include finite population size
effects are always more realistic, but usually the
basic understanding of a system can be derived
by considering deterministic dynamics; stochas-
tic extensions often work in a predictable way.

The Quasispecies Equation

Let us start with the quasispecies equation of
molecular evolution (Eigen & Schuster, 1977;
Eigen et al., 1989). The variable xi denotes the
relative abundance of a genetic sequence, i; in a
population. The fitness, fi; of this sequence is
r 2002 Elsevier Science Ltd. All rights reserved.



replicator-mutator 

Quasispecies
equation

Lotka-Volterra
equation

Adaptive dynamics

Game dynamical 
equation

replicator
Price equation

Replicator-mutator
equation

Price 
equation

General evolutionary dynamics

Price equation

Fig. 1. General evolutionary dynamics are described by
the equivalence between the replicator–mutator equation,
the replicator–mutator Price equation (which uses the
labeling system of the replicator–mutator framework) and
the Price equation (which uses the labeling system of the
Price equation). The game dynamical equation is obtained
from the replicator–mutator equation by neglecting muta-
tion. Similarly, the replicator Price equation is derived from
the Price equation in the absence of mutation. The Lotka–
Volterra equation, the game dynamical equation and the
replicator Price equation are equivalent. Adaptive dy-
namics can be derived from the replicator Price equation.
The quasispecies equation is a special case of the replicator–
mutator equation for the case of constant fitness.
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determined by its replication rate. The average
fitness of the population is given by %f ¼

P
i fixi:

There are n genetic sequences. Replication is
error-prone; the probability that replication of
sequence i gives rise to sequence j is given by qij:
These quantities describe the mutation matrix,
Q: The rate at which xi changes over time is
given by

’xi ¼
Xn

j¼1

xj fjqji � xi
%f: ð1Þ

The term, �xi
%f; ensures that

P
i xi ¼ 1: The

quasispecies equation describes the adaptation
of a population on a constant fitness landscape.
The underlying geometry is given by sequence
space, which is a high-dimensional array of
sequences arranged in such a way that neighbor-
ing sequences differ by a single-point mutation.

Evolutionary Game Dynamics and
Lotka–Volterra

Evolutionary game theory is a phenotypic
approach to evolutionary dynamics (Maynard
Smith, 1982). It describes the natural selection
of strategies in evolutionary games, such as the
Hawk–Dove game or the Prisoner’s Dilemma.
The key aspect of evolutionary game theory is
frequency-dependent selection: the fitness of an
individual depends on the frequency of other
strategies in the population, Let xi denote the
frequency of strategy i; Its fitness, fiðxÞ; is a
function of the distribution of the population
given by the vector x ¼ ðx1; y; xnÞ: Evolution-
ary game dynamics of discrete phenotypes are
described by the replicator equation (Hofbauer
& Sigmund, 1998; Taylor & Jonker, 1978):

’xi ¼ xi½ fiðxÞ � %f �: ð2Þ

For early treatments of frequency-dependent
selection, see Haldane & Jayakar (1963), Sacks
(1967), Wright (1969), Crow & Kimura (1970),
Charlesworth & Charlesworth (1975, 1976a, b).
In ecology, the Lotka–Volterra equation

describes the interaction among n different
species (Lotka, 1920; Volterra, 1926; May,
2001). The abundance of species i is given by
yi: The reproductive rate (fitness), fi; of each
species depends on the abundance of other
species. In general, we have ’yi ¼ yi fiðyÞ: The
Lotka–Volterra equation for n � 1 species is
equivalent to the replicatior equation for n
phenotypes. Let y ¼

Pn�1
i¼1 yi: The equivalence

can be shown with the transformation xi ¼ yi=
ð1þ yÞ for i ¼ 1; y; n � 1 and xn ¼ 1=ð1þ yÞ
(Hofbauer & Sigmund, 1998).

The Replicator–Mutator Equation

The quasispecies equation (1) lacks frequency-
dependent selection, while the replicator equa-
tion (2) lacks mutation. Combining these two
equations we obtain

’xi ¼
Xn

j¼1

xj fjðxÞqji � xi
%f: ð3Þ

This ‘‘replicator–mutator equation’’ describes
both frequency-dependent selection and muta-
tion. It has been used in population genetics
(Hadeler, 1981), autocatalytic reaction networks
(Stadler & Schuster, 1992), game theory (Bomze
and Buerger, 1995) and language evolution
(Nowak et al., 2001). It is clear that the
quasispecies equation and the replicator equa-
tion are special cases of the replicator–mutator
equation.
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The Price Equation

In 1970, George Price derived an equation to
describe any form of selection (Price, 1970, 1972;
Frank, 1995). The ‘‘Price equation’’ was used by
Hamilton in his seminal work on kin selection
(Hamilton, 1970). It has been applied to
problems in evolutionary genetics (Lewontin,
1974; Crow & Nagylaki, 1976), social evolution
(Frank, 1998), group selection (Price, 1972;
Michod, 2000), sex ratio (Frank, 1986) and
ecological diversity (Loreau & Hector, 2001).
Fisher’s fundamental theorem of natural selec-
tion can be directly derived from the Price
equation (Frank, 1998). For continuous time,
the Price equation is of the form (Price, 1972)

’EðpÞ ¼ Covð f ; pÞ þ Eð ’pÞ: ð4Þ

The numerical value of an arbitrary trait of
individual i is given by pi: The population
average of this trait is given by %p 	 Eð pÞ ¼P

i pixi: The covariance of trait p and fitness f is
given by Covð f ; pÞ ¼

P
i xi fipi � %f %p: The second

term eqn (4) is the population average of the rate
at which the trait values change over time. We
have Eð ’pÞ ¼

P
i xi ’pi: If the trait values, pi; do not

change with time, we obtain the ‘‘covariance
equation’’, ’EðpÞ ¼ Covð f ; pÞ:

Equivalence

We will now show that the game-dynamical
eqn (2) is equivalent to the Price eqn (4), while
the replicator–mutator eqn (3) is equivalent to
an expanded Price equation of the form

’EðpÞ ¼ Covð f ; pÞ þ Eð ’pÞ þ Eð fDmpÞ: ð5Þ

The additional term, Eð fDmpÞ ¼
P

i xi fiDmpi;
describes mutation among types, with Dmpi ¼P

j qijð pj � piÞ denoting the expected change in
trait value when mutating from type i:
We have %p 	 EðpÞ ¼

P
i pixi and therefore

’Eð pÞ ¼
P

i pi ’xi þ
P

i xi ’pi: From the replicator–
mutator equation (3), we obtain

’Eð pÞ ¼
X

i

pi

X
j

xj fjqji � xi
%f

 !
þ Eð ’pÞ

¼
X

ij

pixj fjqji � %f %p þ Eð ’pÞ
¼
X

ij

pjxj fjqji � %f %p

þ
X

ij

ð pi � pjÞxj fjqji þ Eð ’pÞ

¼
X

j

pjxj fj � %f %p þ
X

j

xj fj

X
i

qjið pi � pjÞ

þ Eð ’pÞ ¼ Covð f ; pÞ þ Eð ’pÞ þ Eð fDmpÞ

This is the expanded Price equation with the
additional mutation term. The term Covð f ; pÞ
describes selection (and in our framework would
include epistatic and dominance interactions
among genes and alleles). The term Eð ’pÞ
describes changes in trait value, which may be
consequences of changes in the environment or
the trait being frequency-dependent (such as
fitness). The term Eð fDmpÞ describes mutation
among the different types. In the same way, we
can derive the standard Price eqn (4) from the
replicator eqn (2).
In general, the Price equation is dynamically

insufficient (Lewontin, 1974; Barton & Turelli,
1987). To calculate how the population average
of a trait changes with time, we need to consider
a differential equation for the covariance, which
in turn will include higher moments. Dynamic
sufficiency can only be obtained in special cases.
For our purpose, the trick is to consider n traits
that are indicator functions of the n types: for
i ¼ 1yn we have p

/iS
j ¼ 1 if i ¼ j and p

/iS
j ¼ 0

if iaj: The population average of p/iS is
Eðp/iSÞ ¼

P
j xjp

/iS
j ¼ xi: For the three terms

on the RHS of the expanded Price equation (5),
we obtain Covð f ; p/iSÞ ¼ xið fi � %f Þ;Eð ’p/iSÞ ¼ 0;
and Eð fDmp/iSÞ ¼ �xi fi þ

P
k xk fkqki: Hence,

the Price equation for trait p/iS leads to the
replicator–mutator equation for frequency xi:
In Appendix A, we also show the equivalence

between the replicator–mutator equation and the
expanded Price equation for discrete time and
for sexual reproduction with recombination.
One can also show equivalence between the
Price equation and a replicator–mutator equa-
tion describing continuous phenotypes.
In our framework, the Price eqn (4) does not

include mutation, whereas the expanded Price
eqn (5) does include mutation. It is interesting to
note that Price does not mention mutation in his



K. M. PAGE AND M. A. NOWAK96
original papers (Price, 1970, 1972). Nevertheless,
Frank points out that the Price eqn (4) is an
exact and complete description of evolutionary
dynamics including both selection and mutation
(Frank, 1995, 1998). The resolution of this
apparent discrepancy lies in the different labeling
systems. In our paper, we use the labeling system
of the replicator–mutator framework: xiðtÞ de-
notes the relative abundance of type i individuals
at time t: In the original Price equation, however,
xiðtÞ denotes the relative abundance of indivi-
duals at time t that are derived from type i
individuals at time 0. Indeed, with this unusual
labeling system the Price eqn (4) can be
interpreted to include any form of mutation
and selection. Hence, it makes sense to call
eqn (4) ‘‘replicator Price equation’’ and eqn (5)
‘‘replicator–mutator Price equation’’ if one uses
the labeling system of the replicator framework.
In contrast, ‘‘Price equation’’ should refer to
eqn (4) with the labeling system of Price. In this
sense, the Price equation is equivalent to the
replicator–mutator Price equation which is
equivalent to the replicator–mutator equation.

Adaptive Dynamics

Another framework for evolutionary change is
given by adaptive dynamics (Nowak & Sigmund,
1990; Metz et al., 1996; Dieckmann & Law,
1996; Dieckmann & Doebeli, 1999), which
describes how continuous traits or strategies
change under mutation and frequency-depen-
dent selection. Adaptive dynamics assume there
is a resident population which is surrounded by a
cloud of mutants. Selection chooses the mutant
with maximum fitness in the context of the
resident population. In the limit of many
mutants very close to the resident population,
one obtains an equation using partial derivatives
of trait values. Adaptive dynamics illustrate the
nature of evolutionarily stable strategies (Hof-
bauer & Sigmund, 1998), which emerge as stable
or unstable equilibrium points. There is also a
connection to Wright’s ‘‘adaptive landscape’’
and formulations of selection gradients (Lande
& Arnold, 1983; Brawn & Vincent, 1987; Iwasa
et al., 1991; Turelli & Barton, 1994).
It turns out that adaptive dynamics can be

derived from the Price equation. Let us assume
that the population is described by a continuous
distribution, xð pÞ; of some trait variable, p: The
fitness of individuals with a particular trait value
p depends on x and is given by f ð p;xÞ:
Let us start from the expanded Price eqn (5)

but assume that the expect mutational change
for trait p is zero. Hence, Eð fDmpÞ ¼ 0; and we
obtain the Price eqn (4). Observe, however, that
we do not assume there is no mutation, we only
assume that on average mutational events are
equally likely to increase or decrease the trait
value. Let us further assume that the trait values,
pi; do not change with time. Hence, Eð ’pÞ ¼ 0
and we obtain the covariance equation, ’Eð pÞ ¼
Cov½ p; f ðp; xÞ�: The fitness of individuals with a
trait value p is given by f ð p; xÞ; where x describes
the distribution of the population. A first-order
Taylor expansion of f ð p; xÞ around the popula-
tion average %p 	 Eð pÞ ¼

R
xð pÞp dp is given by

f ð p; xÞEf ð %p;xÞ þ ð p � %pÞ
@f ðq; xÞ

@q
jq¼ %p:

Hence,

’Eð pÞECovðp; f ð %p;xÞ þ ðp � %pÞ
@f ðq;xÞ

@q
jq¼ %pÞ

¼VarðpÞ
@f ðq;xÞ

@q
jq¼ %p:

This equation describes the adaptive dynamics
for trait p:

Discussion

In summary, we have shown that different
descriptions of evolutionary and ecological
dynamics can be transformed into each other.
At the center of the unified framework are the
replicator–mutator equation and the Price equa-
tion, which emerge as equivalent formulations of
general evolutionary dynamics. The replicator–
mutator equation describes the dynamics of the
distribution of a population, while the Price
equation describes its moments. In specific
limits, we obtain adaptive dynamics, evolution-
ary game dynamics and the quasispecies equa-
tion. Understanding the relationship among
evolutionary equations is useful, because results
for one system can be transferred to other
systems, and specific problems are more easily
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expressed in one framework than another. We
also need to be aware that the different
approaches are equivalent formulations of the
same fundamental theory of biology.

Support from the Packard Foundation, the Leon
Levy and Shelby White Initiatives Fund, the National
Science Foundation and Jeffrey Epstein is gratefully
acknowledged.

REFERENCES

Barton, N. H. & Turelli, M. (1987). Adaptive land-
scapes, genetic distance and the evolution of quantitative
characters. Genet. Res. 49, 157–173.

Bomze, I. & Buerger, R. (1995). Stability by mutation in
evolutionary games. Games Econ. Behav. 11, 146–172.

Brown, J. S. & Vincent, T. L. (1987). A theory for the
evolutionary game. Theor. Popul. Biol. 31, 140–166.

Charlesworth, D. & Charlesworth, B. (1975). Theo-
retical genetics of batesian mimicry I. Single-locus
models. J. theor. Biol. 55, 283–303.

Charlesworth, D. & Charlesworth, B. (1976a).
Theoretical genetics of batesian mimicry II. Evolution
of supergenes. J. theor. Biol. 55, 305–324.

Charlesworth, D. & Charlesworth, B. (1976b).
Theoretical genetics of batesian mimicry III. Evolution
of Dominance. J. theor. Biol. 55, 325–337.

Crow, J. F. & Nagylaki, T. (1976). The rate of change
of a character correlated with fitness. Am. Nat. 110,
207–213.

Crow, J. F. & Kimura, M. (1970) An Introduction to
Population Genetics Theory. Burgess Publishing Co.,
Minneapolis, MN.

Dieckmann, U. & Law, R. (1996). The dynamical theory
of coevolution: a derivation from stochastic ecological
dynamics. J. Math. Biol. 34, 579–612.

Dieckmann, U. & Doebeli, M. (1990). On the origin of
species by sympatric speciation. Nature 400, 354–357.

Eigen, M., Mccaskill, J. & Schuster, P. (1989). The
molecular quasispecies. Adv. Chem. Phys. 75, 149–263.

Eigen, M. & Schuster, P. (1977). Hypercycle–principle of
natural self-organization. A. Emergence of hypercycle.
Naturwissenschaften 64, 541–565.

Frank, S. A. (1986). Hierarchical selection theory and sex
ratios I. General solutions for structured populations.
Theor. Popul. Biol. 29, 312–342.

Frank, S. A. (1995). George Price’s contributions to
evolutionary genetics. J. theor, Biol. 175, 373–388.

Frank, S. A. (1998). Foundations of Social Evolution.
Princeton, NJ: Princeton University Press.

Hadeler, K. P. (1981). Stable polymorphisms in a
selection model with mutation. SIAM J. Appl. Math.
41, 1–7.

Haldane, J. B. S. & Jayakar, S. D. (1963). Polymorphism
due to selection depending on the composition of a
population. J. Genet. 58, 318–323.

Hamilton, W. D. (1970). Selfish and spiteful behaviour in
an evolutionary model. Nature 228, 1218–1220.

Hofbauer, J. & Sigmund, K. (1998). Evolutionary games
and population dynamics. Cambridge, MA: Cambridge
University Press.
Iwasa, Y., Pomiankowski, A. & Nee, S. (1991). The
evolution of costly mate preferences. II. The ‘‘handicap’’
principle. Evolution 45, 1431–1442.

Lande, R. & Arnold, S. J. (1983). The measurement of
selection on correlated characters. Evolution 37, 1210–1226.

Lewontin, R. C. (1974). The Genetic Basis of Evolutionary
Change. Columbia University Press, New York.

Loreau, M. & Hector, A. (2001). Partitioning selection
and complementarity in bio-diversity experiments. Nat-
ure 412, 72–76.

Lotka, A. J. (1920). Undamped oscillations derived from
the law of mass action. J. Am. Chem. Soc. 42, 1595–1599.

May, R. M. (2001). Stability and Complexity in Model
Ecosystems. Princeton, NJ: Princeton University Press.

Maynard Smith, J. (1982). Evolution and the Theory of
Games. Cambridge, MA: Cambridge University Press.

Metz, J. A. J., Geritz, S. A. H., Meszena, G., Jacobs,
F. J. A. & Von Heerwarden, J. S. (1996). In: Stochastic
and Spatial Structures of Dynamical Systems (van Strien,
S. J. & Verduyn Lunel, S. M. eds), 183–231. Amsterdam:
North Holland.

Michod, R. E. (2000). Darwinian Dynamics. Princeton, NJ:
Princeton University Press.

Nowak, M. A. & Sigmund, K. (1990). The evolution of
reactive strategies in iterated games. Acta Appli. Math.
20, 247–265.

Nowak, M. A., Komarova, N. L. & Niyogi, P. (2001).
Evolution of universal grammar. Science 291, 114–118.

Price, G. R. (1970). Selection and covariance, Nature 227,
520–521.

Price, G. R. (1972). Extension of covariance mathematics.
Ann. Hum. Genet., London 35, 485–490.

Sacks, J. M. (1967). A stable equilibrium with minimum
average fitness. Genetics 56, 705–708.

Stadler, P. F. & Schuster, P. (1992). Mutation in
autocatalytic reaction networksFan analyses based on
perturbation theory. J. Math. Biol. 30, 597–632.

Taylor, P. J. & Jonker, L. (1978). Evolutionary stable
strategies and game dynamics. Math. Biosci. 40, 145–156.

Turelli, M. & Barton, N. H. (1994). Genetic and
statistical analyses of strong selection on polygenic traits:
what, me normal? Genetics 138, 913–941.

Volterra, V. (1926). Variozioni e fluttuazioni del numero
d’individui in specie animali conviventi. Mem. Accad.
Naz. Lincei 2, 31–113.

Wright, S. (1969). The Theory of Gene Frequencies.
Chicago: The University of Chicago Press.

Appendix A

DISCRETE TIME

The replicator–mutator equations for discrete
generations is of the form x0

i ¼
P

j qjisjxj=%s: Here
si is the selection coefficient or discrete time
fitness and %s 	 EðsÞ ¼

P
i sixi: From DEð pÞ ¼P

i p0
ix

0
i �
P

i pixi; we obtain

EðsÞDEð pÞ ¼ Covðs; pÞ þ EðsDmpÞ

þ EðsDpÞ þ E½sDmðDpÞ�:
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Here EðsDmpÞ ¼
P

ijð pi � pjÞqjisjxj;EðsDpÞ ¼P
j Dpjsjxj and E½sDmðDpÞ� ¼

P
ijðDpi � DpjÞ

qjisjxj: The three expectation terms on the RHS
can be incorporated into a single term using the
definition Dtotpj ¼

P
iðqjip

0
iÞ � pj: Hence, we obtain

EðsÞDEð pÞ ¼ Covðs; pÞ þ EðsDtotpÞ:

In the same way, the replicator equation in
discrete time, x0

i ¼ xisi=%s; leads to

EðsÞDEðpÞ ¼ Covðs; pÞ þ EðsDpÞ:

SEXUAL REPRODUCTION

For the case of sexual reproduction, the
replicator–mutator equation is of the form

’xi ¼
X

jk

xjxkFjkQjki � %fxi:
Here Fjk ¼ Fkj is the rate at which individuals
j and k meet the reproduce. Qjki ¼ Qkji is the
probability that mating between j and k results
in an offspring of type i: For simplicity, we
assume here that there is only one sex, and the
mating interaction is symmetric. Extensions to
other cases are possible.
We have fi ¼

P
j Fijxj and %f ¼

P
i xi fi: From

this equation, we can derive the expanded Price
equation ’EðpÞ ¼ Covð f ; pÞ þ Eð ’pÞ þ EðFDmpÞ;
where EðFDmpÞ ¼

P
jk xjxkFjkDmpjk and Dmpjk ¼P

i Qjki½ pi � ð pj þ pkÞ=2�: The reverse direction
again uses indicator traits.
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