The Wolfson Institute for Biomedical Research
at the Cruciform Building
UCL logo

Dr. Nicoletta Kessaris
- 020 7679 6737 / n.tekki-kessaris@
ucl.ac.uk

Neuronal Fate and Circuit Development

home page


The adult brain consists of a large number of neurons and glial cells, most of which are generated during embryogenesis from neuroepithelial stem cells. Neural stem cells are highly specialised with respect to the neurons they generate, thus creating the extensive neuronal diversity that exists in the adult brain.

We focus on cortical inhibitory interneurons, a heterogeneous population of neurons implicated in neurodevelopmental disorders such as autism and schizophrenia. Using molecular genetic tools in model organisms, we have been mapping out their stem cell origins. Using loss- and gain-of-function approaches in vivo, we are examining the role of signalling pathways and other mechanisms involved in interneuron specification. Interneurons in the adult cortex connect to their cortical targets in a highly specialized manner. We are investigating molecular mechanisms the mediate synaptic partner selection. Our aim is to gain insight into the role of subtype-specific wiring of interneurons in functional neural assemblies.

Another area of high complexity in terms of neuronal composition is the septum. Located at a nodal point in the forebrain, the septum forms an integral part of the limbic system that regulates emotion and memory. We are examining the embryonic origin and specification of septal neurons. Using in vivo approaches we are looking into the role of different neuronal populations in septal circuits and how perturbations of the system can affect behaviour.

Selected publications

Kessaris N, Magno L, Rubin AN, Oliveira MG. (2014) Genetic programs controlling cortical interneuron fate. Curr Opin Neurobiol. In Press.

Rubin AN, Kessaris N. (2013) PROX1: a lineage tracer for cortical interneurons originating in the lateral/caudal ganglionic eminence and preoptic area. PLOS One. In Press.

Baudoin J-P, Viou L, Launay P, Luccardini, Espeso S, Kiyasova V, Eirinopoulou T, Alvarez C, Rio J-P, Boudier T, Lechaire J-P, Kessaris K, Spassky N and Metin C. (2012) Tangentially migrating neurons assemble a primary cilium that promotes their re-orientation to the cortical plate. Neuron 76(6):1108-22.

Magno L, Oliveira MG, Mucha M, Rubin AN, Kessaris N. (2012) Multiple embryonic origins of nitric oxide synthase-expressing GABAergic neurons of the neocortex. Front Neural Circuits 6:65.

Rubin AN, Alfonsi F, Humphreys MP, Choi CKP, Rocha SF and Kessaris N. (2010) The germinal zones of the basal ganglia but not the septum generate inhibitory interneurons for the cortex. J Neurosci 30(36): 12050-12062..

Nobrega-Pereira S, Kessaris N, Du T, Kimura S, Anderson SA, Marin O. (2008) Postmitotic Nkx2-1 controls the migration of telencephalic interneurons by direct repression of guidance receptors. Neuron 59(5): 733-45.

Fogarty M, Grist M, Gelman D, Marin O, Pachnis V, Kessaris N. (2007) Spatial genetic patterning of the embryonic neuroepithelium generates GABAergic interneuron diversity in the adult cortex. J Neurosci 27(41): 10935-46.


Academic Career

2009-date Reader in Developmental Neuroscience, University College London

2006-2009 MRC New Investigator, University College London

2003-2006 Senior Postdoctoral Research Fellow, University College London

1999-2003 Postdoctoral Research Fellow, University College London

1998-1999 Research Assistant, University of Cambridge

1993-1998 PhD University of Cambridge

1992-1993 MSc King’s College London

1989-1992 BSc Imperial College London

Funding

Wellcome Trust
European Research Council


Wolfson Institute for Biomedical Research - The Cruciform Building - University College London
Gower Street - London - WC1E 6BT -------------------------- Telephone: +44 (0)20 7679 2000 Copyright © 1999-2008 UCL