Feed icon


chromosome 22q deletion

Parkinson's chromosome deletion linked to other genetic disorders

Researchers, led by BRC-supported Professor Nicholas Wood, UCL Institute of Neurology, have made a breakthrough in their understanding of Parkinson’s disease after they discovered a chromosome deletion linked to Parkinson’s disease and other genetic disorders. More...

Prof John Hardy

Prof John Hardy is the first UK winner of $3m Breakthrough Prize in Life Sciences

Professor John Hardy (UCL Institute of Neurology) has been awarded the $3 million Breakthrough Prize in Life Sciences for his pioneering research into the genetic causes of Alzheimer’s disease, other forms of dementia and Parkinson’s disease. More...

John Hardy, PhD, right, accepted the 2015 Robert A. Pritzker Prize from MJFF VP Brian Fiske, PhD, and Michael J. Fox on April 15.

John Hardy awarded 2015 Robert A. Pritzker Prize for Leadership in Parkinson's Research

One of the UK Parkinson's Disease Consortium Principal Investigators, Prof John Hardy, has been awarded the 2015 Robert A. Pritzker Prize for his leadership in Parkinson's genetics research. The award was presented by Michael J. Fox at a ceremony in New York on April 15. From the Michael J. Fox Foundation website: More...

Webcast - Prof Nicholas Wood - Advances in Genetic Understanding of Parkinson's Disease.

Video: Advances in Genetic Understanding of Parkinson's Disease

Webcast of the presentation entitled ‘Advances in Genetic Understanding of Parkinson's Disease’ given by Nicholas Wood (University College London, United Kingdom) presented at the Biochemical Society Hot Topic event, PINK1-Parkin Signalling in Parkinson’s Disease and Beyond, held in December 2014. More...

Pedigrees and I-FP-CIT SPECT scan images of the four families with GCH1 mutations involved in this study.

GCH1 gene and Parkinson's risk

A study published in Brain, led by researchers at UCL Institute of Neurology, has shown that genetic mutations which cause a decrease in dopamine production in the brain and lead to a form of childhood-onset Dystonia, also play a role in the development of Parkinson’s disease.

Neurological Signalling Group

Our research concentrates on unraveling the molecular pathways leading to cell dysfunction and death in familial forms of Parkinson’s disease (PD). The abnormal proteins encoded by the mutated genes cause a range of different but overlapping pathological effects in neurons, in particular protein kinase phosphorylation, protein accumulation and mitochondrial dysfunction. Our aim is to characterize the molecular pathways associated with the PD recessive genes and to understand how they crosstalk in the development of the disease.

To this end we have developed the core resources of appropriate cell models and have access to human brain tissue carrying abnormalities in the PD-associated genes as well as in mice in which these genes have been disrupted. Techniques used include cell and primary culture, molecular biology, biochemistry and microscopy.

Neurological Signalling Group diagram

Page last modified on 21 mar 11 15:57