Leonard Wolfson Experimental Neurology Centre (LWENC)

The new Leonard Wolfson Experimental Neurology Centre (LWENC) has opened for clinical studies and trials


Audioslide presentation on Claudia Manzoni's paper examining how fibroblasts with LRRK2 mutations react to starvation conditions and the possible deficits that they have in autophagy.

LRRK2 and autophagy in fibroblasts

In this paper Claudia Manzoni studies how fibroblast cells from people with Parkinson’s disease caused by mutations in LRRK2 react to starvation. Although the changes are quite subtle, there are differences between the way that fibroblasts that contain mutant LRRK2 respond to being starved – suggesting that there may be changes in the way that these cells regulate a key process called autophagy (a term which comes from the greek meaning to eat yourself, and is one of the ways that cells get rid of waste and recycle proteins and organellles).

Drosophila fly model - University of Sheffield

Genetic mutations linked to Parkinson's disease

Research led by consortium researchers Dr Helene Plun-Favreau (UCL Institute of Neurology) and Dr Alex Whitworth (University of Sheffield), and collaborator Dr Heike Laman (University of Cambridge), has discovered how genetic mutations linked to Parkinson’s disease might play a key role in the death of brain cells, potentially paving the way for the development of more effective drug treatments. In the new study, published in Nature Neuroscience, the team of cross-institutional researchers showed how defects in the Parkinson’s gene Fbxo7 cause problems with mitophagy. More...


LRRK2 and autophagy

Mutations in LRRK2 are the most common genetic cause of Parkinson’s disease. Here, Claudia Manzoni talks about her research (funded by the Rosetrees Trust and the Michael J. Fox Foundation) into what LRRK2 might be doing within the cell: Parkinson’s disease is a brain illness that afflicts 1 in 500 people in the UK. High profile patients, such as the actor Michael J Fox, the boxer Muhammad Ali and the late Pope John Paul II, have raised public awareness of Parkinson’s and its devastating impact. More...

GBA neurons

GBA and mitochondria

Dr Laura Osellame tells us about her recent paper in Cell Metabolism about Mitochondrial dysfunction linked to loss of an enzyme called GBA: Gaucher Disease (GD) is a rare inherited disease, belonging to the family of lysosomal storage disorders. Mutations in the gene glucocerebrosidase (GBA) are responsible for the disease and can increase susceptibility to Parkinson’s disease (PD). Genetic studies undertaken at UCL and other hospitals around the world suggest that mutations in GBA are the most common genetic risk factor currently known for PD. More...

Direct Observation of the Interconversion of Normal and Toxic Forms of a-Synuclein

27 June 2012

UCL Institute of Neurology Parkinson’s Disease (PD) experts Dr Emma Deas, Dr Andrey Abramov and Professor Nicholas Wood joined forces with prominent Cambridge biophysicists Dr Nunilo Cremades, Professor David Klenerman FRS and Professor Christopher Dobson FRS to identify the pathological species of alpha-synuclein responsible for nerve cell damage during disease.

Together, they identified that the structural conversion of alpha-synuclein aggregates from alpha-helical to high beta-sheet content was highly damaging to nerve cells.  These exciting results were published last month in the prestigious scientific journal “Cell”.

This important discovery not only advances our current understanding of the disease but also lays the foundation for the development of novel drug therapies, which can specifically ‘attack’ this species of alpha-synuclein to prevent nerve cell damage occurring.

Cell work: Type B oligomers induce high aberrant levels of ROS


Direct Observation of the Interconversion of Normal and Toxic Forms of α-Synuclein

Nunilo Cremades, Samuel I.A. Cohen, Emma Deas, Andrey Y. Abramov, Allen Y. Chen, Angel Orte, Massimo Sandal, Richard W. Clarke, Paul Dunne, Francesco A. Aprile, Carlos W. Bertoncini, Nicholas W. Wood, Tuomas P.J. Knowles, Christopher M. Dobson, David Klenerman

Cell - 25 May 2012 (Vol. 149, Issue 5, pp. 1048-1059)

Page last modified on 27 jun 12 10:59