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In this paper, I discuss some of the little-appreciated problems in testing for a significant difference in genetic diversity, h, between two sampled populations, and some suggested solutions.  
NOTE 1. While I use the example of h throughout, the same problems and solutions also apply to tests for differences in genetic distance such as FST or similarlity such as Nei’s I.  The problems are similar because all these measures depend on 
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, the sum over all m alleles of the square of each allele’s frequency xi.

NOTE 2.  In what follows, I address only the issue of whether two populations differ in their h values or not.  I do not address the issue of why they differ.  In particular, if two populations are found to differ in their h value, it is often then assumed that some systematic difference in their population demography (in particular, their effective population size) is the cause of this difference in h.  However, two populations can have exactly identical population demographies and histories and yet still differ in their h values due simply to chance drift, otherwise known as evolutionary variance.  Two ways to account for evolutionary variance, neither of which will be discussed further here, are:  (1) to model explicitly the demographic history of both populations, and see if they are different; (2) to find a number of paired populations across which the same pattern of difference in h is found.  Such systematic differences would not be produced by evolutionary variance alone.
It is remarkably difficult to find a robust test for the difference in two h values for the following reasons.

1) Permutation tests are not valid.  These operate under the null hypothesis of no difference in allele frequencies, which is not the same as no difference in h values.  Briefly, a significant result tells you that the difference in h is not consistent with both samples coming from the same underlying distribution, but doesn’t tell whether the difference in h is consistent with the samples coming from separate distributions which happen to have the same h value.
2) Bootstrapping methods are biased.  Under this method, you resample assuming that observed allele frequencies exactly equate to real population allele frequencies.  This leads to a bias of n/(n-1) between the mean h of the bootstrap samples and the expected h of the real population (where n is the sample size).  If h is close to 1, this bias difference, even for moderately large n (e.g. 20<n<100), can be so large that the expected real h of the population falls outside of the 95% confidence interval on the bootstrapped h.

3) Z-tests require an assumption of Normality which is not valid.  The sampling distribution of h is skewed, especially for values close to 1.  Thus, although unbiased formulae exist for the mean and variance of this distribution, Z-tests based on these formulae may fall foul of the departure from assumed Normality.

In the past (e.g. see Thomas et al. 2002, AJHG 70: 1411-1420).  I have suggested a heuristic solution to the above problems by employing a conservative double-testing procedure using both Method (2) and Method (3) above.  In Method (2), samples from

both populations are bootstrapped, a sampling distribution for the difference in h is obtained, and a 2-tailed P-value is calculated based on twice the smaller frequency of values lying to one side of zero (equivalently, a two-tailed confidence interval is constructed around the difference in h, such that one limit just touches zero).  In Method (3), unbiased h's and their sampling variances are calculated from standard formulae (e.g. see Nei’s 1987 book: “Molecular Evolutionary Genetics”), and a P-value for the difference in h is obtained via the standard Z-test.  As a conservative measure, the larger of these two P-values is then used.

The above approach is heuristic and does not guarantee a conservative Type I error rate, but at least it does something to address the issue.  There is some comfort in the fact that, for Method (2), two things are likely to apply: (a) the bias issue will affect both h value in a similar way, so the difference in h will suffer less from bias than either h value alone; (b) the sampling variance in h gets smaller as h gets closer to one.  Since the mean bootstrap h will be less than the expected true h, it is likely that the bootstrap sampling distribution will have more variance than the true sampling distribution, increasing the chances that this method is conservative.  In my experience, Method (3) is even more conservative than Method (2), and Method (4) below provides the best power.
4) A proposed Bayesian solution.

The bootstrapping Method (2) assumes the true population distribution of allele frequencies exactly equals the sampled frequencies.  In truth, however, we have no certainty in any one allele frequency distribution – instead we have a space of such allele frequency distributions, with some distributions being more likely than others based on the data we have observed.
The standard Bayesian solution to this problem is to assume a Dirichlet(1,1,…,1) prior (with one shape parameter for each allele class), resulting in a Dirichlet(A1+1, A2+1, … Am+1) posterior once the data are observed, where Ai is the number of copies of Allele i observed in the sample.

The problem with this standard solution in that, for highly diverse populations with h close to one, it is very likely that not all allele classes present in the population are represented in the sample.  How should these unseen allele classes be presented, given that the total number of such classes may be an unknown, large number?  One approach would be to model the underlying frequency vs allele number distribution (i.e. a distribution based on ordering all alleles according to their frequency on the x-axis and plotting their frequency on the y-axis).  For example, a geometric distribution would allow for an infinite number of alleles with ever diminishing population frequencies.  This approach, however, would be tricky to implement and would require some assumption on the frequency vs allele number distribution.
Here I present an alternative, simpler solution.  If one assumes that k is the total number of allele classes in the population (k≥m, where m is the number of observed allele classes), then it is possible to find a value v such that a Dirichlet(A1+v, A2+v, …, Am+v, v, v, …, v) distribution has an expected h equal to the unbiased h calculated from the population sample.  One can interpret v as the number of copies is each allele class observed before the actual data were collected, in order to form the Bayesian prior.  Under the standard convention (but this is no more than a convention, one forms the prior by assuming one copy of each allele class is “observed” previously).
To find v, first note that for a Dirichlet(c1, c2, …, ck) distribution, where 
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Mean (allele i) = 
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Variance (allele i) = 
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And since Variance = E(X2) – E(X)2; then

E(xi2) = Variance – mean2 = 
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Hence E(h) = 1-E(
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Substituting A1+v, A2+v, etc into the above equation yields, for our case:

E(h) = 
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Hence setting the above equation equal of hub (the unbiased estimate of h from the population sample) and rearranging as a quadratic in v yields:
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A solution for v can be found using the standard formula, where a, b, and c are the coefficients for the v2, v and constant terms.
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Provided real solutions for v exist, the appropriate choice of v would be the smallest positive root.

The above solution leaves open the question of what value of k to choose.  A heuristic solution offered here is to increase k in the series k=m, m+1, m+2, … until v<1.  Experience so far suggests that this results in more unseen alleles when there are many singletons and a high hub value, and less unseen alleles when there are fewer singletons and a lower hub value, which is a desirable result.  Note that if hub=1 then there are no solutions save as k→∞.  However, a solution should exist for all other values of hub.

Having obtained a suitable posterior distribution for the allele frequencies in both populations, it is possible to test for a difference in h in one of two ways:

(A) Simulate realisations of the allele frequencies for both populations, calculate h in both cases (note here we are generating true frequencies from a posterior distribution, hence there is no need to apply a bias correction to the h values).  From this, find the posterior distribution for the difference in h.  Find the credible interval in the difference in h that just touches 0.  This gives the “weight of evidence” for a true difference in h.  This is not the only way the evidence could be weighed – for example, one could question whether a two-tailed or a one-tailed credible interval is appropriate.  I use a 2-tailed interval in order is to give some sort of equivalence with the frequentist tests presented before.
(B) Simulate realisations of the allele frequencies for just one population (Pop A).  Now draw a sample of size nB from this distribution (where nB is the sample size from Pop B) and calculate h.  Repeat many times to form a sampling distribution for h under these conditions.  If the observed h for Pop B departs significantly from this distribution, this indicates (a) that Pop B does not have the same frequency distribution of Pop A; and (b) that the difference in distributions is such that the real h for B is likely to be higher than the real h for A.
Of the two approaches, (A) is more complete.  Method (B) suffers from the same problem as a permutation test, in that it is a test of whether the h value for Pop B is consistent with Pop B having the same distribution as Pop A, but does not allow Pop B to have a different distribution to Pop A which happens to have the same h value.  However, (2) may be preferable in cases where nB is small (since v is a heuristic approach which may not work well if little is known about the population) and especially if hub=1, as a solution to the real population structure of Pop B is then not available.

Implementation
Matlab/Octave
Matlab is a commercial package offering a “matrix environment” within which data can be imported and manipulated.  See http://www.mathworks.com/.  A free Matlab look-a-like package is available, called Octave (http://www.octave.org/).  The instructions below should also work with Octave, except that the procedure for changing the working directory may be different.
If you have Matlab, copy the *.m files accompanying this document into a directory accessible to Matlab.  One way of doing this is to start Matlab, then within the Matlab window issue the following command to change to directory <your directory> where the *.m files are stored:

cd ‘<your directory>’

To import your data on allele counts in samples taken from 2 populations, define matrix ‘M’ within the Matlab window as follows:


M = [
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In the above example, each row represents a different allele or haplotype, and the two columns represent the counts observed in Population A and B respectively.

To find the unbiased h value for each population, type:


Nei_h(M)
To obtain a P-value for the difference in h based on the conservative double-testing procedure described above and also described in Thomas et al. 2002, AJHG 70: 1411-1420, type:


runs=10000;

P=double_test_h(M,runs)
‘runs’ determines the number of times bootstrap resampling is done for Method (2) described above.  You may set it to other values if you wish.

To obtain a ‘noncredible-value’ (Bayesian equivalent of a P-value) for difference in h based on the Bayesian approach Method A described above (roughly, the non-credible-value is the weight of evidence for the idea that there is no difference in h), type:

runs=10000;

prob=Bayes_testA_h(M,runs)
‘runs’ determines the number of times the posterior allele frequencies for both Pop A and Pop B are drawn for Bayes Method (A) described above.  You may set it to other values if you wish.

To obtain a ‘noncredible-value’ (Bayesian equivalent to a P-value) for difference in h based on the Bayesian approach Method B described above, type:


runs=10000;

prob=Bayes_testB_h(M,runs)
You should arrange matrix ‘M’ so that the Population for which the Dirichlet distribution is to be formed is on column 1, and the one for which simulated resamplings are to be drawn is in column 2. 

R/S-Plus
S-plus is a commercial package offering an environment specifically catered to the manipulation of statistical data.  See http://www.insightful.com/.  A free S-Plus look-a-like package is available, called R (http://lib.stat.cmu.edu/R/CRAN/).  The functions below were actually written using R, so this is the favoured platform for implementing them.  Although they haven’t been tested, they should also work in S-Plus.

To load the functions into R, start R, open “R_functions.txt” using a standard text editor, then copy and paste all the text in this file to the R window.

To import your data on allele counts in samples taken from 2 populations, define matrix ‘M’ within the Matlab window as follows.  Note that, unlike Matlab, the number of columns must be stated explicitly in the “matrix” command; also numbers must be separated by normal white-spaces and not by tabs; and that a blank line must be present after the data list to specify end-of-reading.
M <- matrix(scan(""),ncol=2, byrow=T)
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To find the unbiased h value for each population, type:


Neih(M)$h
To obtain a P-value for the difference in h based on the conservative double-testing procedure described above and also described in Thomas et al. 2002, AJHG 70: 1411-1420, type:


runs <- 10000;

double.test.h(M,runs)$Phi
‘runs’ determines the number of times bootstrap resampling is done for Method (2) described above.  You may set it to other values if you wish.

To obtain a ‘noncredible-value’ (Bayesian equivalent of a P-value) for difference in h based on the Bayesian approach Method A described above (roughly, the non-credible-value is the weight of evidence for the idea that there is no difference in h), type:


runs <- 10000;

Bayes.testA.h(M,runs)$prob
‘runs’ determines the number of times the posterior allele frequencies for both Pop A and Pop B are drawn for Bayes Method (A) described above.  You may set it to other values if you wish.
To obtain a ‘noncredible-value’ (Bayesian equivalent of a P-value) for difference in h based on the Bayesian approach Method B described above, type:


runs <- 10000;

Bayes.testB.h(M,runs)$prob
You should arrange matrix ‘M’ so that the Population for which the Dirichlet distribution is to be formed is on column 1, and the one for which simulated resamplings are to be drawn is in column 2. 
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