
 
Chapter 2 –  Interspecific hybridisation and introgression in animal taxa

Abstract

It has long been established that interspecific hybridisation, and consequently introgression can play an important evolutionary role in plants, however, in animals introgression has generally been considered absent or unimportant. This view was due largely to the misconception that animals hybridise only rarely in nature, and to the generally negative attitude towards animal hybrids. Here I aim to show that hybridisation is more common between animal species than is generally realised, and that this can lead to gene flow. I review the studies of interspecific hybridisation and introgression to date, and suggest some limitations with these. Finally, I examine the possible consequences of animal introgression for species definition, evolution, phylogeny reconstruction, conservation and commercial applications and suggest directions for future work in this area.

Introgression

Introgression was defined by Avise (1994) as “the movement of genes between species (or other well-marked genetic populations) mediated by back-crossing”. Here I will look at the process of introgressive hybridisation between animal species, that is hybridisation between species, accompanied by gene flow. 

Research bias on plants
In a database literature search under the terms ‘introgression’ and ‘gene’ (Web of Science, 07/01/03), 718 references were returned. Of these studies, 68% were plant studies, with only 32% of studies focusing on animals (Table 1). This demonstrates the historical bias of introgression studies towards plant taxa. 

It has long been accepted that interspecific hybridisation in plants can lead to introgression of genetic material from one species to another, and that this can be important in the evolution of plants (e.g. Stebbins, 1950; Mayr, 1963; Heiser, 1973). Although the exact role that hybridisation and introgression plays in evolution is still a subject of much debate (Arnold, 1997; Barton, 2001), it is clear that novel combinations of genes arising in hybrids can act as a new resource for natural selection to work on. Paradoxically, though these studies asserted the role introgression plays in driving evolution in plant taxa, the same was not generally thought to be true in animals, where introgression of genetic material has historically been seen as unimportant. Part of this bias may due to the greater frequency with which plant species hybridise (Stebbins, 1950; Grant, 1981). Another reason may be that zoologists have often emphasised the negative aspects of hybridisation, whereas botanists tend to view the process in a more positive light (Heiser, 1973). 

Table 1 – Analysis of introgression studies. (From Web of Science 07/01/03). 


Study type

Year
Plants
Animals



Intraspecific
Drosophila
Commercial
Conservation
Other

1981
0
0
0
0
0
1

1982
1
0
0
0
0
0

1986
0
0
1
0
0
0

1988
1
0
0
0
0
0

1989
1
0
0
0
0
0

1990
1
0
0
1
0
0

1991
22
2
1
3
2
3

1992
19
0
0
3
1
3

1993
27
3
1
6
2
4

1994
36
0
0
5
0
1

1995
45
1
0
4
5
2

1996
41
5
1
11
2
6

1997
58
4
1
7
6
3

1998
48
7
1
9
1
7

1999
47
1
1
10
3
4

2000
57
4
3
12
3
8

2001
65
10
3
12
6
6

2002
52
9
2
10
6
4

Totals
521
46
15
93
37
52

Hybridisation in animals is often seen as the breakdown of isolating mechanisms brought about unnaturally by habitat destruction or human disturbance (Mayr, 1963). Many researchers have been unwilling to think of animals as capable of interspecific hybridisation, a view summed up by this quote from Fisher (1958), “The grossest blunder in sexual preference, which we can conceive of an animal making, would be to mate with a species different from its own”. 

Hybridisation in animal taxa

Natural hybridisation has often been thought of as insignificant in the evolution of animals (Burke and Arnold, 2001). Hybrids between animal species were thought to arise so infrequently as to be irrelevant, but recent studies on a range of animal taxa have shown that this is not necessarily the case. Here we use Arnold et al’s (1991) definition of hybrids as arising from matings between species (as opposed to races, sub-species or geographically distinct populations).

There have been several attempts in recent years to quantify the percentages of animal species that hybridise in nature. Grant and Grant (1992) found that 9.2% of bird species hybridise with one or more relative, Guillaumin and Descimon (1976) found that 11% of European butterflies hybridise, Sperling (1990) reported over 6% of Papilio species hybridising and Mallet et al (2002) found that 29% of Heliconius butterfly species produce viable hybrids with at least one other species.  In the Great Lakes of Africa, there are hundreds of closely related cichlid fish species which hybridise probably naturally, although this is enhanced when the water turbidity rises due to human disturbance (Seehausen et al, 1997; Turner et al, 2001). It is not just birds, butterflies and fish that hybridise either. Wolves and coyotes hybridise naturally (Hall, 1978), as do bison and domestic cattle (Templeton, 1991; Polziehn et al, 1995), and Bullini and Nascetti (1990) document cases of speciation by hybridisation in insects as diverse as stick insects, grasshoppers and black flies.

It has often been assumed that allopatric species will be more likely to hybridise if brought into contact, than sympatric species, as this latter group will be expected to have developed isolating mechanisms to prevent hybridisation. However, a number of studies have shown that hybridisation can occur in sympatry (e.g. Vane-Wright and Smith, 1992; Grant and Grant, 1992; Mallet et al, 2002). 

Historically, it has been difficult to detect animal hybrids, as they often show little morphological differentiation from one of the parental forms, or may fall within the range of morphological traits for several species (Bullini and Nascetti, 1990; Hewitt, 1993; Barton, 2001). This has changed with the increasing use of molecular techniques which have enabled hybrids to be identified more easily and reliably, even when cryptic morphologically (Bullini, 1994; Rhymer et al, 1994; Allendorf et al, 2001). However, even with molecular techniques, it can be difficult to distinguish between evidence for hybridisation and lineage sorting (Sang and Zhong, 2000; Holder et al, 2001). 

As a result of the recent advances in molecular techniques, the number of documented cases of introgressive hybridisation between animal species is increasing (Streit et al, 1994). It is clear from these studies that a high number of animal species breed with close relatives to form hybrids in the wild. Given this level of natural hybridisation between animal species, it seems likely that some introgression of genetic material is likely to occur.

Animal introgression studies

In the literature search mentioned earlier, 32% of introgression studies were on animal taxa.  Of these, 6% dealt with intraspecific gene flow, with only 26% of all papers dealing with gene flow between animal species. 

Non-molecular studies

Early studies on hybridisation and gene flow used non-molecular techniques, many of which are still used today. Some look at the introgression of morphological traits (Bell, 1996; Bynum et al, 1997; Seehausen et al, 1997; Crespin et al, 1999; Faivre et al, 1999), or other characters such as song (Lein and Corbin, 1990), cytotypes (Michailova, 1996), or pheromone introgression (Hepburn et al, 1994). 

Limitations of non-molecular studies

These studies have many limitations, as hybrids are defined using characters that are intermediate between two forms. However, an intermediate may just be due to natural variation within a taxon, rather than a true hybrid. Deciding whether an individual has intermediate characteristics can also be very subjective, so that designations of hybrid status may differ between researchers. Additionally, it is not usually possible to distinguish between F1 hybrids, backcrosses or later stage hybrids. 

Molecular studies

The advent of techniques such as allozyme electrophoresis in the 1960s and the polymerase chain reaction (PCR) in 1985 sparked a revolution in evolutionary biology (Saiki et al, 1985; Mullis et al, 1986; Guyer and Koshland, 1990; Avise, 1994). These technological advances have allowed introgression to be studied using a huge range of new markers (Harrison, 1990). 

Allozyme electrophoresis has hitherto been a popular means of detecting gene flow across the species boundary (e.g. Derr, 1991; Lee and Engstrom, 1991; Brown, 1995; Gardner, 1996; Lessios and Pearse, 1996; Jiggins et al, 1997; Spaak, 1997; Berrebi et al, 2000; Cianchi et al, 2003). Allozyme data can indicate whether alleles characteristic of one species are present at low levels in another species, providing more direct evidence of interspecific gene flow, and an estimate of how often it occurs. With further advances in molecular techniques, studies became more detailed with more loci being analysed at a time.  After allozymes came restriction fragment length polymorphisms (RFLP), which essentially give information similar to multiallelic allozyme data, although there are only two alleles at each site in a given locus (e.g. Ferris et al, 1983; Aubert et al, 1997; Martinsen et al, 2001). With the development of randomly amplified polymorphic DNA (RAPD), the number of loci being analysed at a time rose to 20 or 30 (e.g. Deverno et al, 1998), and with amplified fragment length polymorphisms (AFLP) that number rose to hundreds, although both techniques deliver genetically dominant presence/absence band markers at each single locus. Microsatellites provide another multiallelic genetic marker technique which uses nucleotide repeats to produce PCR fragments of different lengths according to the number of repeats there are (e.g. Chenuil et al, 2000; Noor et al, 2001a). Microsatellites are again scored using gel banding patterns, although this time on a sequencing gel. These methods have revealed that the extent of genetic variation in natural populations is huge; however the total variation cannot be known without study at the DNA sequence level (Nei, 1987).

Many groups have looked for evidence of interspecific gene flow in animals at the nucleotide level, by direct sequencing of PCR products. The vast majority of these studies have used mitochondrial DNA (mtDNA), (e.g. Aubert et al, 1997; Garcia and Powell, 1998; Garnery et al, 1998; Pilgrim et al, 1998; Davison et al, 1999; Feder et al, 1999; Freeland and Boag, 1999; Sota et al, 2001; Saltzburger et al, 2002; Cianchi et al, 2003). This predominance of mitochondrial DNA based phylogenies in the literature, is due largely to its haploid inheritance which makes sequencing easy (no cloning is required), and many universal mtDNA primers are available. The latest studies have used nuclear DNA sequence data to study introgression. Studies using nuclear primers for studies of animal introgression are, however rare (e.g. Wang et al, 1997; Vane-Wright et al, 1999, Kliman et al, 2000; Ting et al, 2000; Saetre et al, 2001; Machado et al, 2002; Shaw, 2002). 

Limitations of molecular studies to date

Allozymes, RFLP’s. RAPD’s, AFLP’s and microsatellites are all electrophoretic techniques, based on scoring banding patterns. The results are often hard to read and open to misinterpretation. It is usually possible to tell only that fragments are the same length, but not whether they are equivalent. Two different fragments can have the same mobility, and so can give false positives of hybridisation. If closely related species are studied, it may not be possible to detect differences at a single base polymorphism. This poses a major problem in introgression studies, as species will usually be closely related if they hybridise. Allozymes often display low levels of interspecific variation and are therefore of limited use in studies of closely related species (Pacheco et al, 2002). Deverno et al, (1998) caution that for RAPD technology “meticulous technique must be used to avoid artefacts”, and that “variation of results among laboratories with different thermal cyclers is a limiting factor in overall reproducibility and applicability”. Noor et al, 2001a urge caution in using microsatellite data for phylogeny reconstruction or to infer divergences between populations. In future, micro-array technology will allow a large sample of the whole genome to be viewed rather than just a small subset of loci., raising the potential for electrophoretic techniques as useful tools in introgression studies.

Direct sequencing of DNA provides many more characters and a seemingly more reliable method for assessing potential introgression between species. Most studies to date have used mitochondrial genes for this purpose, as they are easier to manipulate, clonally inherited, rapidly-evolving, single copy, non-recombining and are abundant (Simon et al, 1994).  The problem with this is that, because of the lack of recombination, the entire mitochondrial genome can effectively be seen as a single locus, limiting its usefulness in phylogenetic studies (Moore, 1995). Pacheco et al, 2002 note that “because mtDNA is inherited primarily matrilineally, it can be used to identify maternal species; however it fails to detect male-mediated introgression, so cannot be used to estimate rates of hybridisation or introgression”. 

Single copy nuclear DNA (scnDNA) can be more useful because the nuclear genome provides many, essentially independent loci to work with. Nuclear genes have the advantage over mtDNA of providing numerous independent genealogies which are under varying degrees of selective constraint, with different mechanisms and rates of evolution, and with a biparental mode of inheritance (Degnan, 1993). Hybrids can be detected using nuclear markers as they carry nuclear DNA from both parental species (Pacheco et al, 2002). Nuclear introns offer a potentially rich source of characters for detecting introgression between species (Hey and Kliman, 1993; Slade et al, 1994; Palumbi and Cipriano, 1998; Friesen, 2000; Pacheco et al, 2002). Because introns are non-coding, they accumulate mutations faster than coding sequence, making them especially valuable for phylogeny reconstruction between closely related species. 

Many studies of animal introgression to date have been carried out at hybrid zones, where hybrids are often found in large numbers (Barton and Hewitt, 1985; Harrison, 1990, 1993; Howard et al, 1993; Bullini, 1994; Jiggins et al, 1997; Dasmahapatra et al, 2002). Hybrid zones can be seen as natural laboratories for studying speciation and evolution (Arnold, 1997), but are not ideal for studying introgression between species, as it could be argued that speciation has not really occurred yet.  There are in fact many examples of genes flowing between animal populations called “separate species”, which are found adjacent to one another, but which don’t coexist in sympatry; these taxa are, however, not the kind of species that contribute to local diversity. There are examples in Drosophila where detailed statistical analysis has revealed that gene flow occurring a long time ago is more probable than the maintenance of ancestral polymorphisms, in order to explain why similar (but non-identical) alleles are maintained within each species (e.g. Wang et al, 1997; Ting et al, 2000; Noor et al, 2000; Machado et al, 2002). But there are few well-documented examples in animals where two clearly genetically, ecologically, and morphologically differentiated species coexist in sympatry, and currently exchange some genes, but not others (e.g. Caccone et al. 1998; Thelwell et al. 2000; Gentile et al, 2002; Cianchi et al, 2003). 

Why does introgression occur?

Discerning whether hybridisation has arisen naturally or is due to human disturbance is critical for conservation studies. Rates of interspecific hybridisation and introgression have undoubtedly increased due to translocation and habitat modification by humans (Allendorf et al, 2001). Habitat modification, purposeful introduction of species and domestication can all lead to introgressive hybridisation (Wiegand, 1935; Anderson and Stebbins, 1954; Atkinson, 1989). However, introgressive hyridisation is not always caused by anthropogenic interference. Geological events or climatic changes can lead to a break down in reproductive isolation between species, resulting in the mixing of gene pools which can eventually lead to the loss of genetically distinct populations (Bullini and Nascetti, 1990; Rhymer and Simberloff, 1996). 

Where in the genome does introgression occur?

An interesting problem in speciation research is that before reproductive isolation is complete, some parts of the genome are able to cross the species boundary, whereas others are not (e.g. Wang et al, 1997; Butlin, 1998; Noor et al, 2001b; Beltrán et al, 2002).  So what factors affect this differential ability of genes to flow between species? Areas of the genome linked with barriers to gene exchange such as hybrid sterility or sexual isolation would be expected to be unable, or at least unlikely to introgress, whereas unlinked loci might be expected to flow between species more readily. If there is female F1 hybrid sterility, then mtDNA introgression will be impossible. 

All other things being equal, introns and other non-coding regions might be more likely to show introgression than coding regions, and, where exon variation occurs, transferences will be most likely for variants at 3rd codon positions. If a locus is disruptively selected, or linked to such e,g,. colour pattern genes, they will be prevented from flowing and should not introgress. Conversely, if a mutation is globally advantageous, it should be able to spread across the species barrier much faster. All of these factors may be of importance when choosing gene regions to sequence for introgression studies. 

The consequences of introgression 

Given the recent body of evidence for interspecific hybridisation and gene flow between animal species in the wild, what are the possible consequences? To answer this, it is perhaps best to start with a direct comparison with plants. In plants it is known that introgressive hybridisation can cause problems for conservation of rare species, species definition, and phylogeny reconstruction. Introgressive hybridisation has clearly played a major role in plant evolution (Arnold, 1992); and the potential of deliberately introgressing genetic material into plants has already been harnessed for the improvement of crops. These consequences of introgression are all equally important, although usually less well-studied in animals.  

Implications – Conservation

A large part of the animal gene flow literature to date has focused on mammals and birds of high conservation status. Introgression of genetic material between animals has very important implications in conservation biology (Avise, 1994; Haig, 1998). Genes from common or introduced species can enter the rarer or native species genome by hybridisation, resulting in the eventual loss of ‘pure’ species by homogenisation of genomes (e.g. Grant, 1981; O’Brien and Mayr, 1991; Rhymer and Simberloff, 1996; Pilgrim et al, 1998; Seehausen et al, 1997; Davison et al, 1999; Allendorf et al, 2001; Randi et al, 2001; Turner et al, 2001). Indeed, Randler (2002) has shown that in bird species at least, hybridisation is more common where one of the two species is rare. Hybrids formed between a protected species and a non-protected relative may also suffer through losing their protection status (see species definition implications). It has been assumed that once a species hybridises, it loses its identity, and therefore no longer requires protection (O’Brien and Mayr, 1991). However, rare species are the most likely to hybridise with other species and in the most need of protection. In using this criterion for deciding which species to protect, those most needy, rarest species are also likely to be most at risk from hybridisation, and consequently will be most prone to removal from the endangered list.  Policies dealing with hybrids and introgression have been a subject of much debate in recent years (e.g. Allendorf et al, 2001), but no general consensus has yet been reached as to the appropriate legislation to enforce.

On the positive side, animal species suffering from genetic bottlenecks due to restricted range size or isolation, may benefit from the deliberate introduction of genetic material from different populations, or even species to prevent their decline through inbreeding depression.  One example of this is that genetic material from the Texas cougar (Puma concolor stanleyana) has been used in an attempt to prevent inbreeding depression in the Florida panther (P. c. coryi), (Maehr and Caddick, 1995; Maehr and Lacy, 2002).

Implications - Species definition

The problem of species definition is central to the problems caused by hybridisation and introgression between species, but links between conservation biologists and systematists remain poor (Rojas, 1992).

Since the 18th century, the problem of how to define ‘species’ has been hotly debated. Introgression of genetic material between species can cause especial difficulties with regard to species definition: because species are defined on the basis of the splitting of two evolutionary lineages into two distinct forms, problems can arise when these two resulting forms hybridise with each other (Schwenk et al, 1995; Turner et al, 2001). In using the biological species concept to define species, taxa which hybridise may become amalgamated into a single species. However, for instance, some Eastern European wolves (Canis lupus) have mtDNA haplotypes shared with domestic dogs (C. familiaris) (Randi et al, 2001; Randi and Lucchini, 2002), but these are normally thought of as separate species and worthy of conservation, even though all dog breeds originate from domestication of wild wolves. But this same problem of species definition can have dramatic conservation consequences where hybridisation occurs in the wild. For example, the endangered red wolf (Canis rufus) enjoyed full protective status until it was discovered that it was really a natural hybrid population between Canis lupus and the coyote Canis latrans, and is therefore not regarded as a ‘pure’ species in its own right (Wayne and Jenks, 1991; Nowak, 1992; Phillips and Henry, 1992; Brownlow, 1996; Nowak et al, 1998; Randi and Lucchini, 2002). Hybridising species are not recognised under the U.S. Endangered species act (1973), also termed the ‘hybrid policy’, which lead to confusion over the protection of the red wolf (O’Brien and Mayr, 1991). 

Spence and Gooding (1991) suggest that that molecular techniques could be used to determine the amount of gene exchange between a given set of species, and once this has been assessed for a number of taxa, a rational decision may be made about how to handle hybridising species. Hudson and Coyne (2002) suggest that a genealogical species might be defined as one showing monophyly at 95% of sampled nuclear loci, but this would result in many ‘good’ species being joined into a single species. Recently there has been much interest, in both the scientific literature and the media, about using molecular data as a form of ‘DNA barcode’ by which species can be identified (Blaxter, 2003; Hebert et al, 2003; Mallet and Willmott, 2003). This idea seems tempting as a quick-fix solution for identifying the world’s biodiversity, but the existence of introgression and hybridisation mean that these methods can be unreliable for closely related species.

Implications- Commercial

Introgression of genetic material in commercially important species has huge financial implications, and therefore over 38% of the animal introgression papers concern species of commercial importance.

Historically, commercial animal species have been selected for their beneficial traits and crossed using artificial selection. With advances in recombinant DNA technology, this has gone a stage further, with genes being deliberately introduced into commercial animal species in order to improve certain traits (Yancovich et al, 1996; Golden, 2000); for instance, introgression of a plumage colour mutation into commercial Japanese quail to allow for auto-sexing (Minvielle et al, 1999, 2000). Other examples include introgressing genes to increase lamb production (Gootwine et al, 2001; Weimann et al, 2001); using growth hormones to increase salmon size (Hedrick, 2001); and introducing a gene to prevent fish from developing melanoma (Anders et al, 1991). Ever since the 1990’s when commercial companies brought these genetically modified organisms (GMOs) into the public forum, there has been a large amount of concern, and questions have arisen regarding their safety (Arriola, 1997; Burrows, 1999; Ellstrand et al, 1999; Gliddon, 1999; Wolfenbarger and Phifer, 2000; Nash, 2000; Pearce, 2000). Major concerns include the accidental transfer of introduced genes to other organisms, the effects on non-target organisms (for pest resistant transgenes), extinction of indigenous species, the health of humans and animals and the adverse effects on wildlife due to change in farming practices (Diamond, 1999; Perez et al, 2001). So far, the concern has been largely concentrated on transgenic plants (but see Bruggemann, 1993; Levidow  and Kahn, 1996), because of the commonly held belief that genetic material cannot pass from one species to another in animals. Guidelines for evaluating the risk of transgenic crops have been published (e.g. Rissler and Mellon, 1996), but so far no equivalent set of guidelines exists for transgenic animals.  Recent evidence from a number of fish studies suggest that gene introgression has occurred between cultured and wild populations (e.g. Cagigas et al, 1999; Garcia-Martin et al, 1999; Hansen et al, 2000; Epifanio and Philipp, 2000; Utter, 2000; Allendorf et al, 2001; Martinez et al, 2001; Campbell et al, 2002). Commercial breeders need to carefully balance the benefits of introducing new stock, as introgression of alien genotypes with current gene pools may result in the disruption of local adaptation, or in the loss of desirable characteristics (e.g. Cronin et al, 1995; Teale et al, 1995; Conover, 1998). Interspecific hybridisation can also disrupt the normal resistance of plant and animal species to their parasites (Fritz et al, 1999). 

Aside from breeding of animals, gene introgression has other commercial applications such as pest control. Experiments are currently underway to test the feasibility of introducing inducible fatality genes (IFG’s), or inducible sterility genes (ISG’s) via transgenic individuals into a pest population to reduce numbers (Davis et al, 1999). 

Conversely, hybrids between species may well stabilise to become “hybrid species”.  Such species could become pests themselves due to an increased competitive ability (e.g. Bullini and Nascetti, 1989). Additionally, natural introgression can cause pest species to become more of a problem. For instance, chromosomal rearrangements, mitochondrial haplotypes and kdr, a mutation responsible for resistance to pyrethroid insecticides have all been shown to spread between sibling species and geographic races of the Anopheles gambiae group of species through introgression (Caccone et al, 1998; Thelwell et al, 2000; Weill et al, 2000; Gentile et al, 2002). 

Implications – Evolution 

The role that interspecific hybridisation and introgression may play in the evolution of animal species has always been a subject of much debate. Mayr (1963) held the view that introgression is unimportant, whereas Anderson (1949) felt that it presented a means of introducing new gene combinations into species genomes, which could be exploited. Some authors even implicated introgressive hybridisation as having the potential to lead to the extinction of species (Rhymer and Simberloff, 1996; Allendorf et al, 2001). There is still much debate, but generally it is agreed that interspecific hybridisation plays some role in the evolution of animal species, although how much influence it has is still largely unknown (Heiser, 1973; Arnold, 1992, 2001; Dowling and Secor, 1997). 

Introgression can have important implications for evolutionary biology, as interspecific hybridisation provides favourable conditions for rapid and major evolution (Grant and Grant, 1992). Hybridisation produces novel combinations of genes and alleles, which can lead to greater adaptability and diversification (Barton and Hewitt, 1985; Woodruff, 1989; Allendorf et al, 2001; Gerber et al, 2001). Even a small amount of gene flow may be sufficient to override other evolutionary forces such as mutation, drift and selection (Slatkin, 1987, Ellstrand et al, 1999). 

Hybrids are often inferior in some way compared to parental forms (Coyne, 1992; Wu and Davis, 1993; Wu and Palopoli, 1994). However, this is not necessarily always the case (e.g. Barton and Hewitt, 1985; De Marais et al, 1992; Moore and Price, 1993; Reiseberg et al, 1996; Arnold et al, 1999, 2001; Parris, 2001; Hasselquist, 2001; Veen et al, 2001). There may even be hybrid vigour, where hybrids fare better than either parent, particularly if the parental species are inbred (Burke and Arnold, 2001; Grant and Grant, 1992). When both parents are well-adapted to suit their own habitats, it would seem likely that a hybrid between the two species will be less well adapted, being intermediate between the two. However, this can make them more generalist and more able to exploit a range of available habitats and resources, and may prove beneficial in a changing environment (Anderson and Stebbins, 1954; Lewontin and Birch, 1966; Barton, 2001). This can lead to the evolution of new species (e.g. Bullini and Nascetti, 1990). 

Implications – Phylogeny reconstruction and biogeography

There has been much recent debate about how phylogenies should be constructed. Historically, morphological characters have been used to identify species, and these same characters were used in phylogeny reconstruction. Over the last few decades, this has become problematic due to a lack of funding for ‘alpha taxonomy’ and a decrease in the number of trained taxonomists. With the recent advances in molecular techniques, and particularly with the advent of PCR, DNA sequence data have been favoured as a technique for phylogeny reconstruction. DNA sequences are particularly useful for this purpose as they give a virtually unlimited supply of independent characters, whereas morphological characters are limited, have varying but unknown degrees of non-independence, making phylogenies unreliable. Most authors today use molecular data to construct trees, either using mitochondrial genes alone (e.g. Dowling et al, 1992; Hebert et al, 2003), or a combination of mitochondrial and nuclear loci (e.g. Saetre et al, 2001; Beltrán et al, 2002). Others argue for an integrated approach using a combination of morphological characters and DNA sequence data (e.g. Sota and Vogler, 2001). The literature on methods of phylogeny reconstruction, and debates about gene trees versus species trees has been reviewed recently by Brower et al, 1996.

Introgression can cause problems to arise when using gene genealogies to represent the true organismal phylogeny. If there has been hybridisation in the past, there may be introgression of genetic material at some loci, but not at others creating discordant genealogies which can cause confusion (Smith, 1992; Brower et al, 1996; Sang and Zhong, 2000; Tosi et al, 2000; Holder et al, 2001; Rosenberg, 2002). Inclusion of hybrid taxa in a phylogeny may lead to increased amounts of homoplasy which may disrupt the relationships of other taxa (McDade, 1995). If speciation has been recent, this may result in incomplete lineage sorting with species sharing ancestral haplotypes (e.g. Avise et al, 1990; Klicka et al, 1999). Additionally, gene flow between species can cause problems when estimating genetic divergence times as it can bias genetic distances (McKinnon and Rundle, 2002).

Neutral genes have often been proposed as the best to use in constructing genealogies, as those under selection may converge when they are exposed to similar environments (Clarke et al, 1998). This approach may, however be misleading in sympatric species as introgression may occur, and therefore in this situation it may be wise to use genes under divergent selection if possible. In any case, rapidly-evolving gene regions are preferred for closely related taxa, as only the most rapidly evolving nucleotide sites will have accumulated substitutions (Kocher et al, 1989). Additionally, multiple unlinked loci should be used to ensure the best topology is found (Ballard, 2000). 

Single gene trees do not necessarily reflect the ‘true’ organismal tree. Introgression between animal species means that traditional phylogenies based on morphological characters may not accurately reflect the organismal tree, as hybridisation between species will often go undetected phenotypically. Some authors believe that several gene trees, along with morphological trees should be combined in order to elucidate the best theory of relationships in a given set of taxa. For many cases this may be the best solution, but needs to be assessed on a case by case basis, as highly discordant genealogies may lead to a loss of resolution in the  consensus tree (Ballard, 2000). Kliman et al (2000) use a new method they term “divergence population genetics” (DPG) to perform detailed population genetics analysis of species divergence at multiple loci, coupled with analysis of common patterns among loci. This is a potentially powerful technique for investigating species divergence where there is gene flow at some, but not all loci. 

Distinguishing introgression from ancestral polymorphism and balancing selection is vital in establishing the reason for non-concordance of topologies (Avise and Ball, 1990; Goodman et al, 1999; Harrison and Bogdanowicz, 1997. Dobzhansky (1951) noted that the presence of characters from two species in individuals does not necessarily indicate hybridity but that the individuals may represent the remnants of the ancestral population out of which the two species differentiated. 

Biogeographical information may be useful in distinguishing whether non-concordance of character sets is due to recent introgression or ancestral polymorphism. Good et al (2003) used phylogeography to predict expected spatial patterns in two species of chipmunks, and with this information were able to attribute the given pattern to introgression. They used the assumption that introgressed alleles are expected to be more common near to contact zones (Barbujani et al, 1994). 

Evidence for introgression within genealogies may elucidate the biogeography of a set of taxa. For instance, in one study mtDNA introgression was found between two species of Japanese land snail (Euhadra peliomphala and E.brandtii). Since recent contact between the species was deemed unlikely, this was assumed to be evidence of past hybridisation via a landbridge that existed in the early Pleistocene (Shimizu and Ueshima, 2000). 

Future directions

We know that there can be some flow of genetic material between closely related animal species in the wild, and we understand that this can have many consequences for fields as diverse as conservation, agriculture and systematics. The next question might be: “where next?” Studies that have been carried out to date are limited and specific to certain taxa, and use a limited subset of genetic loci. Many more taxa and loci would be needed in order to quantify how widespread introgression really is in the wild. Additionally, given that genes can successfully flow between animal species, it would be advantageous to quantify this in terms of how much, how often and the factors affecting which gene regions are most likely to introgress. More extensive studies into the number of animal species which naturally form hybrids would also be beneficial.
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