A A A

Dr James Nelson

Position Senior Lecturer
Phone (external) +44 (0)20 7679 1875
Phone (internal) 41875
Email(*) j.nelson
Personal webpage http://www.homepages.ucl.ac.uk/~ucakjdb/
Themes Stochastic Modelling and Time Series

* @ucl.ac.uk

Biographical Details

James Nelson

James Nelson joined the Department of Statistical Science as a lecturer in 2010. After a PhD in applied harmonic analysis from the Mathematics Department at Anglia Polytechnic University (1998-2001), he held post-doc positions in: the Applied Mathematics and Computing Group at the University of Cranfield (2001-2004); the Information: Signals, Images, and Systems Research Group at the University of Southampton (2004-2006); and the Signal Processing and Communications Laboratory at the University of Cambridge (2006-2010).

Research Interests

Multiresolution analysis; random fields; spatial models; statistical machine learning; statistical signal and image processing. Examples: Markov random fields; wavelet/Riesz basis construction and pursuit/optimisation; sparsity and other regularisation with applications to detection and classification; weak self-similar random fields; support vector machine kernel construction and hyper-parameter estimation; generalised sampling theory; Hurst index estimation for texture and volatility models.

Post-docs

  • Alfredo Kalaitzis (multivariate time series and sparse methods on networks)
  • Vladimir Krylov

    • statistical image analysis for mammography
    • anomaly detection and semi-supervised learning methods for underwater acoustics
  • Diego Tomassi (sparse regularisation and group sparsity)

Research Students

  • Alex Gibberd (sparsity on graphs and statistical machine learning for network traffic anomaly detection)
  • Daniel Knight-Gaynor (statistical learning for histopathological data)
  • Maria Toomik (multiresolution analysis and regularisation for highly structured data)
  • TBC: [see opportunities below] (computational statistics and spatial models for image data)
  • Christian Niedworok (automated cell detection algorithms in 2-photon microscopy of whole brain images; 1st supervisor Prof. Troy Margrie, MRC National Institute for Medical Research)

Opportunities


Selected publications

  • Nelson, J. D. B. (2014+) On the equivalence between a minimal codomain cardinality Riesz basis, a system of Hadamard-Sylvester operators, and a class of sparse, binary optimisation problems. IEEE Transactions on Signal Processing (accepted)
  • Gibberd, A. J. and Nelson, J. D. B. (2014) High dimensional changepoint detection with a dynamic graphical lasso. IEEE International Conference on Acoustics, Speech, and Signal Processing 
  • Nelson, J. D. B. (2013) Fused Lasso and rotation invariant autoregressive models for texture classification. Pattern Recognition Letters 34(16):2166-2172 
  • Nelson, J. D. B. and Kingsbury, N. G. (2012) Fractal dimension, wavelet shrinkage, and anomaly detection for mine hunting. IET Signal Processing Journal.
  • Nelson, J. D. B. and Kingsbury, N. G. (2011) Enhanced shift and scale tolerance for rotation invariant polar matching with dual-tree wavelets. IEEE Transactions on Image Processing, 20(3): 814-821.
  • Nelson, J. D. B. and Kingsbury, N. G. (2010) Fractal dimension based sand ripple suppression for mine hunting with sidescan sonar. Institute of Acoustics International Conference on Synthetic Aperture Sonar and Synthetic Aperture Radar.
  • Nelson, J. D. B., Damper, R. I., Gunn, S. R. and Guo, B. (2009) A signal theory approach to support vector classification: the Sinc kernel. Neural Networks, 22 (1): 49-57.
  • Guo, B., Gunn, S. R., Damper, R. I. and Nelson, J. D. B. (2008) "A fast separability-based feature selection method for highdimensional remotely-sensed image classification". Pattern Recognition 41 (8): 1670-1679
  • Nelson, J. D. B. (2005) A wavelet filter enhancement scheme with a fast integral B-wavelet transform and pyramidal multi-B wavelet algorithm, Journal of Applied & Computational Harmonic Analysis, 18(3): 234-251.

    More publications, with preprints, can be found here

    See also my Google Scholar and Google Sites pages and the Centre for Computational Statistics and Machine Learning site.

Page last modified on 23 apr 14 15:15