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Longitudinal Data

• Longitudinal data arise when repeatedly measuring an outcome

over time.

• Extremely interesting designs: increase sample size for analysis

without having to find new subjects to study, possibility of

evaluating the evolution of the outcome over time.
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Longitudinal quantile Regression

• Modeling a conditional quantile rather than the conditional

expectation of the outcome may be more appropriate in many

situations.

• Median regression: useful for skewed outcomes, robust to the

presence of outliers

• Predictors may have a different effect on lower or larger quantiles

with respect to the center of the distribution.
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Informative drop-out

• An ubiquitous problem in longitudinal studies is that subjects

are lost at follow up.

• This event may be informative and bias estimates if ignored
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Longitudinal QR with informative drop-out

• Despite the importance of informative missing data, there are

only few approaches to QR in this setting.

• Lipsitz et al. (1997), Yi and He (2009): weighting by inverse

probability of drop-out

• Bayesian approach by Yuan and Yin (2010)

• In the previous works, drop-out can occurr only at one of the

observation times. This is a strong limit as our motivating

example suggests.



6'

&

$

%

A typical example: CD4 Data

• 467 HIV infected patients randomized to didanosine (ddI) or

zalcitabile (ddC).

• 188 died during fup.

• Longitudinal outcome is CD4 count, which is recorded at

baseline, as well as (hopefully) 2, 6, 12 and 18 months thereafter.
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Two popular approaches in mean regression

• Shared-parameter models (Wu and Carrol, 1988): longitudinal

and survival share a latent variable

• Joint-models (Wulfsohn and Tsiatis, 1997; Rizopoulos, 2010):

survival influenced by the expected value of the longitudinal

response
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Pros and Cons

SP and JM are very effective, but:

• limited to Gaussian error distributions and modeling of the

conditional mean

• often limited to Gaussian random effects

• rigid structures for the relationship between the longitudinal and

survival processes

We propose a general solution which is more flexible than SP and JM

and can be used to model the mean or any quantile of the

longitudinal outcome. A general MCEM can be used in all

formulations of the model.
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Set up

• (Ti,∆i): time to event and censoring indicator, i = 1, . . . , n

• Yit: continuous outcome repeatedly observed at t = 1, . . . , ti;

i = 1, . . . , n; ti ≤ Ti.

• Wi, Xit: time fixed and time varying covariates, to be

partitioned (e.g. (Xit1, Xit2) = Xit).
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The JMQR


Yit = β′1Xit1 + β2Xit2 + u′iXit3 + εit

hi(t|ui) = h0(t) exp{γ′Wi + α1β
′
2Xit2 + α2u

′
iXit3}

ui ∼ f(ui|Σ)

where

• f(εit) normal gives a model on the conditional mean of Yit

• An ALD:

f(εit) =
τ(1− τ)

σ
exp

{
−ρ
(εit
σ

)}
,

ρ(u) = u{τ − I(u < 0)}, gives a model on the conditional τ

quantile of Yit.
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Our contribution: the JMQR

• ALD is a simple and convenient parametric assumption for QR,

pioneered in the longitudinal context by Geraci and Bottai

(2007), Liu and Bottai (2009).

• The JM approach works when drop-out occurs at discrete or

continuous time points

• The JMQR generalizes the model of Liu and Bottai (2009) to

include informative drop-out

• Shared-parameter and JM are special cases: shared parameter

when α2 = 0; JM when α1 = α2 and Xit1 = ∅.
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Random effects

• A natural distributional assumption is ui ∼MVN(0,Σ).

• Rizopoulos et al. (2008) shows that this working assumption is

always OK asymptotically.

• When ti is not large, or τ is far from 0.5, it may be better to use

a multivariate T or a multivariate ALD.
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Likelihood

• The joint distribution of time to event and longitudinal processes

is:

f(Ti,∆i, Yi; θ) =

∫
f(Yi|ui; θ)f(Ti,∆i|ui; θ)f(ui|Σ)dui,

where

f(Ti,∆i | ui; θ) = f(Ti | ui; θ)∆iS(Ti | ui; θ)1−∆i

= h(Ti | Tit, ui; θ)∆iS(Ti | Tit, ui; θ).

• The log-likelihood is then:

`(θ) =
∑
i

log f(Ti,∆i, Yi; θ).

• This is analytically intractable.
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Complete Likelihood

`c(θ) =
∑
i

log f(Yi|ui; θ) +
∑
i

log f(Ti,∆i|ui; θ) +
∑
i

log f(ui|Σ)

= − log σ
∑
i

ni −
∑
i

ni∑
t=1

ρ

(
Yit − β′1Xit1 − β′2Xit2 − u′iXit3

σ

)
+

∑
i

∆i log h0(Ti) +
∑
i

γ′Wi + α1

∑
i

β′2XiTi2 + α2

∑
i

u′iXiTi3

−
∑
i

∫ Ti

0

h0(s) exp{γ′Wi + α1β
′
2Xis2 + α2u

′
iXis3}ds

+
∑
i

log f(ui|Σ).
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MCEM

We can obtain the MLE through an MCEM algorithm as follows:

• MCE-step: approximate the posterior for ui through an Adaptive

Rejection Metropolis Sampling. The number of samples for each

i is chosen along the lines of Eichoff (2004) to guarantee an

approximation error below a small threshold.

• M-step: average out the sampled values to estimate the complete

log-likelihood. Compute the profile expected complete likelihood

(next slide). Find values for the parameters such that it is

increased through a one-step Nelder-Mead
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Profile expected complete likelihood

• The number of parameters involved at the M step is too large

due to h0(t).

• We obtain a profile expected complete likelihood by plug-in of a

Nelson-Aalen type estimator

ĥ0(s) =
n∑

i=1

∆iI(Ti = s)

1
B

∑
i:Ti≥s

B∑
b=1

exp{γ′Wi + α1β′2XiTi2 + α2v′ibXiTi3}
,

where vib is sampled from the posterior of ui.

• An implicit closed form expression can be found for σ as well.



17'

&

$

%

Other inferential issues

• Standard errors, confidence intervals: non-parametric block

bootstrap. Standard errors can be used to build Wald statistics

for testing on the regression parameters.

• Testing, model choice: the likelihood can be directly

approximated from the MCEM output, and can be used to check

convergence, likelihood ratio testing, computation of information

criteria.
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CD4 data: KM

The log-HR for CD4 is -0.18 (p < 1e− 16).
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CD4 data: Longitudinal Outcome

Skewness is approximately constant over time (not shown)
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Data: separate models

• Fixed Effects for Longitudinal Median Regression:

estimate std.err p-value

Intercept 7.40 0.21 < 2e− 16

ddI 0.17 0.04 9e-5

ddI*Time 0.01 0.06 0.8648

• Survival for time to event gives a log HR for ddI of -0.33, p=0.25.

You get the same result even after correction for CD4 count.
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Data: JM for the median

• Longitudinal outcome: CD4 count.

• Fixed effects: ddI, ddI:Time

• Random effects: Patient ID, Time

• Survival outcome: time to death

• Baseline predictors: none

• Shared predictors: ddI

• Random effects: Patient ID, Time
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(Last minute) Results

• Fixed Effects for Longitudinal Median Regression:

estimate std.err p-value

Intercept 5.90 0.047 < 1e− 16

ddI 0.063 0.020 0.0016

ddI*Time 0.058 0.028 0.038

• Survival for time to event gives a log HR for ddI of -0.18, p=0.34.
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Some evidence in favor of the chosen model

• α1 = −2.96, p = 0.017

• α2 = −2.01, p = 0.029

• H0 : α1 = α2 = 0 is rejected with p = 0.0067.

• H0 : α1 = α2 is rejected with p = 0.0026.
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Longitudinal Regression on the first decile

• Classical Longitudinal Quantile Regression:

estimate std.err p-value

Intercept 3.47 1.042 0.0016

ddI 0.060 0.041 0.1486

ddI*Time 0.083 0.053 0.1258

• JM:

estimate std.err p-value

Intercept 2.23 0.060 < 1e− 16

ddI 0.044 0.010 0.00001

ddI*Time 0.045 0.010 0.00001
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Conclusions

• Informative drop-out may bias estimates of longitudinal

parameters both in mean and quantile regression.

• The CD4 example suggests that this problem may be stronger for

quantiles corresponding to a higher rate of events.

• In this work we propose a possible solution, generalizing

shared-parameter and joint-models in different directions.
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Further work

• The numerical results are last minute, as said.

• Simulation study

• Evaluation of sensitivity to informative drop-out

• Simoultaneous estimation of multiple quantiles


