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Longitudinal Data I

e Longitudinal data arise when repeatedly measuring an outcome

over time.

e Extremely interesting designs: increase sample size for analysis
without having to find new subjects to study, possibility of

evaluating the evolution of the outcome over time.
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Longitudinal quantile Regression'

e Modeling a conditional quantile rather than the conditional

expectation of the outcome may be more appropriate in many

situations.

e Median regression: useful for skewed outcomes, robust to the

presence of outliers

e Predictors may have a different effect on lower or larger quantiles

with respect to the center of the distribution.
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Informative drop-out I

e An ubiquitous problem in longitudinal studies is that subjects
are lost at follow up.

e This event may be informative and bias estimates if ignored
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Longitudinal QR with informative drop—out'

Despite the importance of informative missing data, there are

only few approaches to QR in this setting.

Lipsitz et al. (1997), Yi and He (2009): weighting by inverse
probability of drop-out

Bayesian approach by Yuan and Yin (2010)

In the previous works, drop-out can occurr only at one of the
observation times. This is a strong limit as our motivating

example suggests.
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A typical example: CD4 Data'

e 467 HIV infected patients randomized to didanosine (ddI) or
zalcitabile (ddC).

e 188 died during fup.

e Longitudinal outcome is CD4 count, which is recorded at

baseline, as well as (hopefully) 2, 6, 12 and 18 months thereafter.
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Two popular approaches in mean regression'

e Shared-parameter models (Wu and Carrol, 1988): longitudinal

and survival share a latent variable

e Joint-models (Wulfsohn and Tsiatis, 1997; Rizopoulos, 2010):
survival influenced by the expected value of the longitudinal

response
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Pros and Cons'

SP and JM are very effective, but:

e limited to Gaussian error distributions and modeling of the

conditional mean
e often limited to Gaussian random effects

e rigid structures for the relationship between the longitudinal and

survival processes

We propose a general solution which is more flexible than SP and JM
and can be used to model the mean or any quantile of the

longitudinal outcome. A general MCEM can be used in all

formulations of the model.
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Set up I

e (T;,A;): time to event and censoring indicator, i =1,...,n

e Y;;: continuous outcome repeatedly observed at t = 1,...,%;;
1= 1,...,77,; tz STZ

e WW;, X;;: time fixed and time varying covariates, to be
partitioned (e.g. (X1, Xiro) = Xit).
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The JMQRI

(

Yie = B1 X1 + B2 X0 + u; Xis + €54
hi(t|u;) = ho(t) exp{y' Wi + a1 85X it2 + aou; X3}
Lui ~ f(ui]X)

2/

where

e f(€;t) normal gives a model on the conditional mean of Y

e An ALD:

flew) = T2 {—p (i) } ,

o o
p(u) =u{r — I(u < 0)}, gives a model on the conditional 7

\ quantile of Y;;.
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Our contribution: the JMQRI

ALD is a simple and convenient parametric assumption for QR
pioneered in the longitudinal context by Geraci and Bottai

(2007), Liu and Bottai (2009).

The JM approach works when drop-out occurs at discrete or

continuous time points

The JMQR generalizes the model of Liu and Bottai (2009) to

include informative drop-out

Shared-parameter and JM are special cases: shared parameter
when as = 0; JM when a7 = ay and X1 = 0.
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Random effects '

e A natural distributional assumption is u; ~ MV N (0, X).

e Rizopoulos et al. (2008) shows that this working assumption is

always OK asymptotically.

e When ¢; is not large, or 7 is far from 0.5, it may be better to use

a multivariate T or a multivariate ALD.
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Likelihood '

~

e The joint distribution of time to event and longitudinal processes

1S:

(T3 A, Vi 0) = / F (Yl 0) (Tiy Adluugs 0) f (i) duss,

where

FIT, A | uis0) = F(T; | g3 0)20S(T; | ug; 0)1

= W(T; | Tie,wi; 0)2S(Ty | Tie, wis 0).

e The log-likelihood is then:

£(0) = Zlog (L, A, Y55 0).

\o This is analytically intractable.
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Complete Likelihood I

~

Zlog f(Yilus; 6) + Zlog F(Ti, Al 0) + Zlog f(wi]%)

10g o Z n; — Z Z ( 'Ltl 52 1t2 th3 )

7 t=1

Z A; log ho(T;) + Z YW + aq Z B5XiT,2 + 2 Z w, X, 3

T;
E / ho(s) exp{y'W; + 185 X;s2 + aou; X;s3}ds
~ Jo

Zlogf(uz'|2)-
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MCEM

We can obtain the MLE through an MCEM algorithm as follows:

e MCE-step: approximate the posterior for u; through an Adaptive
Rejection Metropolis Sampling. The number of samples for each
i is chosen along the lines of Eichoff (2004) to guarantee an

approximation error below a small threshold.

e M-step: average out the sampled values to estimate the complete
log-likelihood. Compute the profile expected complete likelihood
(next slide). Find values for the parameters such that it is
increased through a one-step Nelder-Mead
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Profile expected complete likelihood'

e The number of parameters involved at the M step is too large
due to ho(t).

e We obtain a profile expected complete likelihood by plug-in of a

Nelson-Aalen type estimator

/EO(3> _ Z AzI(TZ — S) ’

B

. 1 / /

i) bzl exp{Y' Wi + a1 By Xir,o + vy Ximia )
1.1;~-8 0=

where v;;, is sampled from the posterior of u;.

e An implicit closed form expression can be found for o as well.
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e Standard errors, confidence intervals: non-parametric block

e Testing, model choice: the likelihood can be directly

Other inferential issues'

bootstrap. Standard errors can be used to build Wald statistics

for testing on the regression parameters.

approximated from the MCEM output, and can be used to check
convergence, likelihood ratio testing, computation of information

criteria.
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CD4 data: KM'
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CD4 data: Longitudinal Outcome'

Baseline CD4 count
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|
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Frequency
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|

CD4

Skewness is approximately constant over time (not shown)
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Data: separate models'

e Fixed Effects for Longitudinal Median Regression:

estimate std.err  p-value

Intercept 7.40 0.21 < 2e — 16
ddlI 0.17 0.04 9e-5
ddI*Time 0.01 0.06 0.8648

e Survival for time to event gives a log HR for ddI of -0.33, p=0.25.

You get the same result even after correction for CD4 count.

/
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Data: JM for the median'

Longitudinal outcome: CD4 count.
Fixed effects: ddI, ddI:Time
Random effects: Patient ID, Time
Survival outcome: time to death
Baseline predictors: none

Shared predictors: ddlI

Random effects: Patient ID, Time
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(Last minute) Results'

e Fixed Effects for Longitudinal Median Regression:

estimate std.err p-value
Intercept 5.90 0.047 < 1le—16
ddI 0.063 0.020 0.0016
ddI*Time 0.058 0.028 0.038

e Survival for time to event gives a log HR for ddI of -0.18, p=0.34.
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Some evidence in favor of the chosen model'

a; = —2.96, p = 0.017
as = —2.01, p = 0.029
. a1 = ag = 0 is rejected with p = 0.0067.

. a1 = i 1s rejected with p = 0.0026.
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/ Longitudinal Regression on the first decile' \

e (lassical Longitudinal Quantile Regression:

Intercept

ddI
ddI*Time

o JM:

Intercept
ddI
ddI*Time

estimate std.err p-value
3.47 1.042  0.0016
0.060 0.041  0.1486
0.083 0.063  0.1258

estimate std.err  p-value
2.23 0.060 < 1le—16
0.044 0.010 0.00001

0.045 0.010 0.00001
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Conclusions '

e Informative drop-out may bias estimates of longitudinal

parameters both in mean and quantile regression.

e The CD4 example suggests that this problem may be stronger for
quantiles corresponding to a higher rate of events.

e In this work we propose a possible solution, generalizing
shared-parameter and joint-models in different directions.
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Further work '

The numerical results are last minute, as said.
Simulation study
Evaluation of sensitivity to informative drop-out

Simoultaneous estimation of multiple quantiles
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