Feed icon



An ultimate speed limit for cooling

How cold can it get? That depends how long you are willing to wait. The third law of thermodynamics, conjectured in 1912 by the Nobel laureate Walter Nernst, states that it takes an infinite time to cool a system to absolute zero – the coldest temperature possible.

Galaxy A2744_YD4

Ancient stardust sheds light on the first stars

A huge mass of glowing stardust in a galaxy seen shortly after the Universe’s formation has been detected by a UCL-led team of astronomers, providing new insights into the birth and explosive deaths of the very first stars. More...

Disc of rocky debris

First evidence of rocky planet formation in Tatooine system

Evidence of planetary debris surrounding a double sun, ‘Tatooine-like’ system has been found for the first time by a UCL-led team of researchers.Published on the 27th Feb 2017 in Nature Astronomy and funded by the Science and Technology Facilities Council and the European Research Council, the study reports on the remains of shattered asteroids orbiting a double sun consisting of a white dwarf and a brown dwarf roughly 1000 light-years away in a system called SDSS 1557. More...

Panasas aisle (Credit: STFC)

UCL secures STFC funding to teach next generation of data-science experts

After a very competitive selection process, UCL has been chosen by STFC to host the Centre for Doctoral Training (CDT) in Data Intensive Science (DIS) and Technologies, the first CDT funded by STFC.

Astronomers find hottest and most massive touching double star

27 October 2015


A team of astronomers including UCL's Ian Howarth have found the hottest and most massive double star with components so close that they touch each other.

The discovery was based on observations from the ESO Very Large Telescope.

The two stars in the extreme system VFTS 352 could be heading for a dramatic end, during which the two stars either coalesce to create a single giant star, or form a binary black hole.

The double star system VFTS 352 is located about 160 000 light-years away in the Tarantula Nebula.

Image credits

Artist's impression - ESO/L. Calcada

Tarantula Nebula image - ESO/M.-R. Cioni/VISTA Magellanic Cloud survey. Acknowledgment: Cambridge Astronomical Survey Unit

Page last modified on 27 oct 15 16:17