Prof Shin-Ichi Ohnuma


Personal Profile

Name: Shin-Ichi Ohnuma Email:
Title: Prof Tel: 44 20 7608 4062
Department: Inst Ophthalmology - Ocular Biology Fax:
Position: Professor Address: Institute of Ophthalmology, UCL, 11-43 Bath Street, London, EC1V 9EL
Research Domain: Basic Life Sciences, Neuroscience, Personalised Medicine Web Page: Personal Web Page


Research Description

Embryonic retina is formed through a combination of multiple developmental processes including neural induction, eye field specification, eye cup formation, cell fate determination, lamination, and differentiation. Our aim is to understand the detailed molecular mechanism of whole retinogenesis. In particular, our main focus of research is on the mechanism of co-ordination of cell cycle regulation with developmental processes. Although the cell cycle needs to be co-ordinated with many aspects of developmental processes, and the defects of the co-ordination are the causes of many human diseases - such as cancer and some retinal disorders - little is known about the mechanism. To determine the mechanism, we use the amphibian retina as a model system. This system is ideal for detailed and fast functional analysis of retinogenesis. Through a combination of in vivo and in vitro approaches, our group is actively searching novel genes

Research Activities

Retinal development, genetics, Xenopus

Education Description

UCL Collaborators

External Collaborators



    • Wang F, Hu W, Xian J, Ohnuma S, Brenton JD (2013). The Xenopus Tgfbi is required for embryogenesis through regulation of canonical Wnt signalling.. Dev Biol, 379(1), 16 - 27. doi:10.1016/j.ydbio.2012.11.010
    • Hu W, Haamedi N, Kinoshita T, Ohnuma SI (2013). The structure and development of Xenopus laevis cornea.. Exp Eye Res, , - . doi:10.1016/j.exer.2013.07.021


    • Dellett M, Hu W, Papadaki V, Ohnuma S (2012). Small leucine rich proteoglycan family regulates multiple signalling pathways in neural development and maintenance.. Dev Growth Differ, 54(3), 327 - 340. doi:10.1111/j.1440-169X.2012.01339.x
    • Takawa M, Cho HS, Hayami S, Toyokawa G, Kogure M, Yamane Y, Iwai Y, Maejima K, Ueda K, Masuda A, Dohmae N, Field HI, Tsunoda T, Kobayashi T, Akasu T, Sugiyama M, Ohnuma S, Atomi Y, Ponder BA, Nakamura Y, Hamamoto R (2012). Histone lysine methyltransferase SETD8 promotes carcinogenesis by deregulating PCNA expression. Cancer Research, 72(13), 3217 - 3227. doi:10.1158/0008-5472.CAN-11-3701
    • Cho HS, Shimazu T, Toyokawa G, Daigo Y, Maehara Y, Hayami S, Ito A, Masuda K, Ikawa N, Field HI, Tsuchiya E, Ohnuma S, Ponder BA, Yoshida M, Nakamura Y, Hamamoto R (2012). Enhanced HSP70 lysine methylation promotes proliferation of cancer cells through activation of Aurora kinase B. Nature Communications, 3, 1072 - .


    • Ohta K, Ito A, Kuriyama S, Lupo G, Kosaka M, Ohnuma S, Nakagawa S, Tanaka H (2011). Tsukushi functions as a Wnt signaling inhibitor by competing with Wnt2b for binding to transmembrane protein Frizzled4. P NATL ACAD SCI USA, 108(36), 14962 - 14967. doi:10.1073/pnas.1100513108


    • Bilitou A, Ohnuma S (2010). The role of cell cycle in retinal development: cyclin-dependent kinase inhibitors co-ordinate cell-cycle inhibition, cell-fate determination and differentiation in the developing retina.. Dev Dyn, 239(3), 727 - 736. doi:10.1002/dvdy.22223


    • Bilitou A, Watson J, Gartner A, Ohnuma S (2009). The NM23 family in development.. Mol Cell Biochem, 329(1-2), 17 - 33. doi:10.1007/s11010-009-0121-6
    • Ohta K, Ito A, Kuriyama S, Lupo G, Nakayama R, Ohshima N, Kosaka M, Ohnuma S-I, Nakagawa S, Tanaka H (2009). Molecular function of Tsukushi on neuronal stem cells. NEUROSCIENCE RESEARCH, 65, S91 - S91. doi:10.1016/j.neures.2009.09.374
    • Bilitou A, Mochizuki T, Ohnuma SI (2009). Co-ordination of cell-cycle and cell fate determination in the Xenopus retina: An interplay of p27Xic1, Cyclin/cdks and NM23 proteins. doi:10.1016/j.mod.2009.06.564
    • Mochizuki T, Bilitou A, Waters CT, Hussain K, Zollo M, Ohnuma S (2009). Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1.. Neural Dev, 4, 1 - . doi:10.1186/1749-8104-4-1
    • Ohta K, Ito A, Kuriyama S, Lupo G, Nakayama R, Ohshima N, Kosaka M, Ohnuma S, Nakagawa S, Tanaka H (2009). Tsukushi is a Frizzled ligand that, in competition with Wnt2b, regulates the proliferation of retinal stem/progenitor cells. doi:10.1016/j.mod.2009.06.730
    • Bilitou A, Watson J, Gartner A, Ohnuma SI (2009). The NM23 family in development. Mol.Cell Biochem., , - .
    • Mochizuki T, Bilitou A, Waters CT, Hussain K, Zollo M, Ohnuma S (2009). Xenopus NM23-X4 regulates retinal gliogenesis through interaction with p27Xic1. Neural Dev., 4, 1 - .


    • Ohta K, Ito A, Kuriyama S, Nakayama R, Oshima N, Kosaka M, Ohnuma S, Nakagawa S, Tanaka H (2008). Tsukushi is a Frizzled4 ligand that regulates the proliferation of retinal stem cells in competition with Wnt2b. NEUROSCIENCE RESEARCH, 61, S42 - S42.


    • Morris SA, Almeida AD, Tanaka H, Ohta K, Ohnuma S (2007). Tukushi modulates Xnr2, FGF, and and BMP signalling: Regulation of Xenopus Germ Layer Formation. PLoS ONE, 2(10), e1004 - .
    • Ohta K, Ito A, Kuriyama S, Ohnuma S, Kosaka M, Nakagawa S, Tanaka H (2007). Tsukushi inhibits the proliferation of retinal stem/progenitor cells. doi:10.1016/j.ydbio.2007.03.574
    • Morris SA, Almeida AD, Ohta K, Ohnuma S-I (2007). Tsukushi refines germ layer formation through coordination of Nodal, FGF and BMP signalling. doi:10.1016/j.ydbio.2007.03.614
    • Ohta K, Ito A, Kuriyama S, Ohnuma S-I, Kosaka M, Nakagawa S-I, Tanaka H (2007). Tsukushi inhibits proliferation of retinal stem cells by Wnt signalling inhibition. NEUROSCIENCE RESEARCH, 58, S56 - S56. doi:10.1016/j.neures.2007.06.328
    • Morris SA, Almeida AD, Tanaka H, Ohta K, Ohnuma S (2007). Tsukushi modulates Xnr2, FGF and BMP signaling: regulation of Xenopus germ layer formation.. PLoS One, 2(10), e1004 - . doi:10.1371/journal.pone.0001004
    • Bilitou A, Ohnuma S (2007). Visualising the dynamics of retinogenesis in a live vertebrate embryo. doi:10.1016/j.ydbio.2007.03.454


    • Vernon AE, Movassagh M, Horan I, Wise H, Ohnuma S, Philpott A (2006). Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Reports, 7(6), 643 - 648. doi:10.1038/sj.embor.7400691
    • Ohnuma S (2006). Role of CDK inhibitors in neural cell fate determination and differentiation. Brain Science Review, , 51 - 66.
    • Harrington AE, Morris-Triggs SA, Ruotolo BT, Robinson CV, Ohnuma S, Hyvonen M (2006). Structural basis for the inhibition of activin signalling by follistatin. The EMBO journal, 25(5), 1035 - 1045. doi:10.1038/sj.emboj.7601000
    • Kuriyama S, Lupo G, Ohta K, Ohnuma S, Harris WA, Tanaka H (2006). Tsukushi controls ectodermal patterning and neural crest specification in Xenopus by direct regulation of BMP4 and X-delta-1 activity. Development, 133(1), 75 - 88. doi:10.1242/dev.02178
    • Ohta K, Kuriyama S, Okafuji T, Gejima R, Ohnuma S, Tanaka H (2006). Tsukushi cooperates with Vg1 to activate primitive streak and Hensen’s node formation in the chick embryo. Development, 133(19), 3777 - 3786.


    • Ohta K, Ohnuma S (2005). Molecular mechanism of chick early development: The new entry of Tsukushi. Cell Technology, 24(7), 722 - 728.
    • Ohta K, Kuriyama S, Okafuji T, Gejima R, Ohnuma S, Tanaka H (2005). Tsukushi is involved in the primitive streak formation in cooperation with Vg1. MECHANISMS OF DEVELOPMENT, 122, S78 - S78.
    • Ohnuma S, Morris-Triggs SA, Daniels M, Mochizuki T, Shimizu K, Zorn AM (2005). Role of PIAS family members in Xenopus mesoderm induction. MECHANISMS OF DEVELOPMENT, 122, S165 - S165.
    • Philpott A, Vernon AE, Ohnuma S (2005). The cyclin-dependent kinase inhibitor Xic1 is a mediator of lateral inhibition during primary neurogenesis. MECHANISMS OF DEVELOPMENT, 122, S25 - S25.


    • Daniels M, Shimizu K, Zorn AM, Ohnuma S (2004). Negative regulation of Smad2 by PIASy is required for proper Xenopus mesoderm formation. development, 131(22), 5613 - 5626. doi:10.1242/dev.01449
    • Ohta K, Lupo G, Kuriyama S, Keynes R, Holt CE, Harris WA, Tanaka H, Ohnuma S (2004). Tsukushi functions as an organizer inducer by inhibition of BMP activity in cooperation with chordin. Developmental Cell, 7(3), 347 - 358. doi:10.1016/j.devcel.2004.08.014
    • Daniels M, Dhokia V, Richard-Parpaillon L, Ohnuma S (2004). Identification of Xenopus cyclin-dependent kinase inhibitors, p16Xic2 and p17Xic3. Gene, 342(1), 41 - 47.


    • Cremiso F, Philpott A, Ohnuma S (2003). Cell cycle and cell fate interaction in neural development.. Current Opinion in Neurobiology, 13, 26 - 33.
    • Ohnuma S, Harris WA (2003). Neurogenesis and the cell cycle. neuron, 40(2), 199 - 208. doi:10.1016/S0896-6273(03)00632-9


    • Ohnuma S, Hopper S, Wang KC, Philpott A, Harris WA (2002). Co-ordinating retinal histogenesis: early cell cycle exit enhances early cell fate determination in the Xenopus retina. Development, 129(10), 2435 - 2446.
    • Ohnuma SM, F B, S P, M H, W A (2002). Lipofection strategy for the study of Xenopus retinal development. Methods, 28(4), 411 - 419.


    • Ohnuma S, Philpott A, Harris WA (2001). Cell cycle and cell fate in the nervous system.. Curr Opin Neurobiol, 11(1), 66 - 73.


    • Hirooka K, Ohnuma S, Koike-Takeshita A, Koyama T, Nishino T (2000). Mechanism of product chain length determination for heptaprenyl diphosphate synthase from Bacillus stearothermophilus.. Eur J Biochem, 267(14), 4520 - 4528.
    • Wang KC, Ohnuma S (2000). Isoprenyl diphosphate synthases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR AND CELL BIOLOGY OF LIPIDS, 1529(1-3), 33 - 48. doi:10.1016/S1388-1981(00)00136-0


    • Ohnuma S, Philpott A, Wang K, Holt CE, Harris WA (1999). p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina.. Cell, 99(5), 499 - 510.
    • Narita K, Ohnuma S, Nishino T (1999). Protein design of geranyl diphosphate synthase. Structural features that define the product specificities of prenyltransferases.. J Biochem, 126(3), 566 - 571.
    • Ruchhoeft ML, Ohnuma S, McNeill L, Holt CE, Harris WA (1999). The neuronal architecture of Xenopus retinal ganglion cells is sculpted by rho-family GTPases in vivo. JOURNAL OF NEUROSCIENCE, 19(19), 8454 - 8463.
    • Wang K, Ohnuma S (1999). Chain-length determination mechanism of isoprenyl diphosphate synthases and implications for molecular evolution. TRENDS IN BIOCHEMICAL SCIENCES, 24(11), 445 - 451. doi:10.1016/S0968-0004(99)01464-4


    • Hemmi H, Ohnuma S, Nagaoka K, Nishino T (1998). Identification of genes affecting lycopene formation in Escherichia coli transformed with carotenoid biosynthetic genes: candidates for early genes in isoprenoid biosynthesis.. J Biochem, 123(6), 1088 - 1096.
    • Ohnuma S, Hirooka K, Tsuruoka N, Yano M, Ohto C, Nakane H, Nishino T (1998). A pathway where polyprenyl diphosphate elongates in prenyltransferase. Insight into a common mechanism of chain length determination of prenyltransferases.. J Biol Chem, 273(41), 26705 - 26713.
    • Ohnuma S, Hemmi H, Koyama T, Ogura K, Nishino T (1998). Recognition of allylic substrates in Sulfolobus acidocaldarius geranylgeranyl diphosphate synthase: analysis using mutated enzymes and artificial allylic substrates.. J Biochem, 123(6), 1036 - 1040.


    • Ohnuma S, Hemmi H, Ohto C, Nakane H, Nishino T (1997). Effects of random mutagenesis in a putative substrate-binding domain of geranylgeranyl diphosphate synthase upon intermediate formation and substrate specificity.. J Biochem, 121(4), 696 - 704.
    • Ohnuma SI, Hirooka K, Ohto C, Nishino T (1997). Conversion from archaeal geranylgeranyl diphosphate synthase to farnesyl diphosphate synthase. Two amino acids before the first aspartate-rich motif solely determine eukaryotic farnesyl diphosphate synthase activity.. J Biol Chem, 272(8), 5192 - 5198.


    • Ohnuma S, Watanabe M, Nishino T (1996). Identification and characterization of geranylgeraniol kinase and geranylgeranyl phosphate kinase from the Archaebacterium Sulfolobus acidocaldarius.. J Biochem, 119(3), 541 - 547.
    • Ohnuma S, Hirooka K, Hemmi H, Ishida C, Ohto C, Nishino T (1996). Conversion of product specificity of archaebacterial geranylgeranyl-diphosphate synthase. Identification of essential amino acid residues for chain length determination of prenyltransferase reaction.. J Biol Chem, 271(31), 18831 - 18837.
    • Ohnuma S, Nakazawa T, Hemmi H, Hallberg AM, Koyama T, Ogura K, Nishino T (1996). Conversion from farnesyl diphosphate synthase to geranylgeranyl diphosphate synthase by random chemical mutagenesis.. J Biol Chem, 271(17), 10087 - 10095.
    • Ohnuma SI, Narita K, Nakazawa T, Ishida C, Takeuchi Y, Ohto C, Nishino T (1996). A role of the amino acid residue located on the fifth position before the first aspartate-rich motif of farnesyl diphosphate synthase on determination of the final product.. J Biol Chem, 271(48), 30748 - 30754.


    • Ohnuma S, Suzuki M, Nishino T (1994). Archaebacterial ether-linked lipid biosynthetic gene. Expression cloning, sequencing, and characterization of geranylgeranyl-diphosphate synthase.. J Biol Chem, 269(20), 14792 - 14797.


    • Ohnuma S, Koyama T, Ogura K (1993). Alteration of the product specificities of prenyltransferases by metal ions.. Biochem Biophys Res Commun, 192(2), 407 - 412. doi:10.1006/bbrc.1993.1430


    • Ohnuma S, Koyama T, Ogura K (1992). Chain length distribution of the products formed in solanesyl diphosphate synthase reaction.. J Biochem, 112(6), 743 - 749.


    • Ohnuma S, Koyama T, Ogura K (1991). Purification of solanesyl-diphosphate synthase from Micrococcus luteus. A new class of prenyltransferase.. J Biol Chem, 266(35), 23706 - 23713.


    • Ohnuma S, Koyama T, Ogura K (1989). Kinetic studies on the prenyl chain elongation by undecaprenyl diphosphate synthase with artificial substrate homologues.. FEBS Lett, 257(1), 71 - 74.

    • Bilitou A, De Marco N, Bello AM, Garzia L, Carotenuto P, Kim M, Campanella C, Ohnuma S, Zollo M (). Spatial and temporal expressions of prune reveal a role in Muller gliogenesis during Xenopus retinal development. Gene, 509(1), 93 - 103. doi:10.1016/j.gene.2012.08.001