Parallel Computing: a brief discussion

Marzia Rivi
Astrophysics Group
Department of Physics & Astronomy

What is parallel computing?

Traditionally, software has been written for **serial computation**:

- To be run on a single computer having a single core.
- A problem is broken into a discrete series of instructions.
- Instructions are executed one after another.
- Only one instruction may execute at any moment in time.

Parallel computing is the simultaneous use of multiple compute resources to solve a computational problem:

- A problem is broken into discrete parts that can be solved concurrently.
- Instructions from each part executed simultaneously on different cores.
Why parallel computing?

• **Save time and/or money:**
 – in theory, more resources we use, shorter the time to finish, with potential cost savings.

• **Solve larger problems:**
 – when the problems are so large and complex, it is impossible to solve them on a single computer, e.g. "Grand Challenge" problems requiring PetaFLOPS and PetaBytes of computing resources (en.wikipedia.org/wiki/Grand_Challenge).
 – Many scientific problems can be tackled only by **increasing processor performances**.
 – Highly complex or memory greedy problems can be solved only with **greater computing capabilities**.

• **Limits to serial computing:** physical and practical reasons
Who needs parallel computing?

<table>
<thead>
<tr>
<th>Researcher 1</th>
<th>Researcher 2</th>
<th>Researcher 3</th>
</tr>
</thead>
</table>
| • has a large number of independent jobs (e.g. processing video files, genome sequencing, parametric studies)
• uses serial applications | • developed serial code and validated it on small problems
• to publish, needs some “big problem” results | • needs to run large parallel simulations fast (e.g. molecular dynamics, computational fluid dynamics, cosmology) |
| **High Throughput Computing (HTC)**
(many computers):
• dynamic environment
• multiple independent small-to-medium jobs
• large amounts of processing over long time
• loosely connected resources (e.g. grid) | **High Performance Computing (HPC)**
(single parallel computer):
• static environment
• single large scale problems
• tightly coupled parallelism | **High Throughput Computing (HTC)**
(many computers):
• dynamic environment
• multiple independent small-to-medium jobs
• large amounts of processing over long time
• loosely connected resources (e.g. grid) |

Researcher 1

- has a large number of independent jobs (e.g. processing video files, genome sequencing, parametric studies)
- uses serial applications

Researcher 2

- developed serial code and validated it on small problems
- to publish, needs some “big problem” results

Researcher 3

- needs to run large parallel simulations fast (e.g. molecular dynamics, computational fluid dynamics, cosmology)
How to parallelise an application?

Automatic parallelisation tools:
- compiler support for vectorisation of operations (SSE and AVX) and threads parallelisation (OpenMP)
- specific tools exists but limited practical use
- all successful applications require intervention and steering

Parallel **code development** requires:
- programming **languages** (with support for parallel libraries, APIs)
- parallel programming **standards** (such as MPI and OpenMP)
- **compilers**
- performance **libraries/tools** (both serial and parallel)

But..., more that anything, it requires **understanding**:
- **the algorithms** (program, application, solver, etc.):
- the factors that influence **parallel performance**
How to parallelise an application?

• First, make it work!
 – analyse the key features of your parallel algorithms:
 • parallelism: the type of parallel algorithm that can use parallel agents
 • granularity: the amount of computation carried out by parallel agents
 • dependencies: algorithmic restrictions on how the parallel work can be scheduled
 – re-program the application to run in parallel and validate it

• Then, make it work well!
 – Pay attention to the key aspects of an optimal parallel execution:
 • data locality (computation vs. communication)
 • scalability (linear scaling is the holy grail: execution time is inversely proportional with the number of processors)
 – Use profilers and performance tools to identify problems.
Task Parallelism

Thread (or task) parallelism is based on executing concurrently different parts of the algorithm.

Features

• Different independent sets of instructions applied to single set (or multiple sets) of data.

• May lead to work imbalance and may not scale well and performance limited by the slowest process.
Data Parallelism

Data parallelism means **spreading data** to be computed through the processors.

Features

- The same sets of instructions applied to different (parts of the) data.
- Processors work only on data assigned to them and communicate when necessary.
- Easy to program, *scale well*.
- Inherent in program loops.

![Flowchart](https://via.placeholder.com/150)

```
begin

no

i<4?

yes

task

end
```

```
data

array[4]

cpu 1

cpu 3

cpu 2

cpu 4
```
Granularity

• **Coarse**
 – parallelise large amounts of the total workload
 – in general, the coarser the better
 – minimal inter-processor communication
 – can lead to imbalance

• **Fine**
 – parallelise small amounts of the total workload (e.g. inner loops)
 – can lead to unacceptable parallel overheads (e.g. communication)
Dependencies

Dictate the order of operations, imposes limits on parallelism and requires parallel **synchronisation**.

In this example the *i* index loop can be parallelized:

```fortran
DO I = 1, N
    DO J = 1, N
        A(J,I) = A(J-1,I) + B(J,I)
    END DO
END DO
```

```c++
for (i=1; i<n; i++){
    for (j=1 ;j<n; j++){
        a[j][i] = a[j-1][i] + b[j][i];
    }
}
```

In this loop parallelization is dependent on the *k* value:

```fortran
DO I = M, N
    A(I) = A(I-K) + B(I)/C(I)
END DO
```

```c++
for (i=m; i<n; i++){
    a[i] = a[i-k] + b[i]/c[i];
}
```

If *k* > M-N or *k* < N-M parallelization is straightforward.
Parallel computing models

Shared memory

- Each processor has direct access to **common physical memory** (e.g. multi-processors, cluster nodes).
- Agent of parallelism: the **thread** (program = collection of threads).
- Threads exchange information **implicitly** by **reading/writing shared variables**.
- Programming standard: **OpenMP**.

Distributed memory

- Local processor memory is invisible to all other processors, **network based memory access** (e.g. computer clusters).
- Agent of parallelism: the **process** (program = collection of processes).
- Exchanging information between processes requires **communications**.
- Programming standard: **MPI**.
OpenMP

http://www.openmp.org

API instructing the compiler what can be done in parallel (high-level programming).

• Consisting of:
 – compiler directives
 – runtime library functions
 – environment variables

• Supported by most compilers for Fortran and C/C++.
• Usable as serial code (threading ignored by serial compilation).
• By design, suited for data parallelism.
OpenMP

Threads are generated automatically at runtime and scheduled by the OS.

- **Thread creation / destruction overhead.**
- Minimise the number of times parallel regions are entered/exited.

```fortran
$OMP PARALLEL
!$OMP END PARALLEL
```

```c
#pragma omp parallel {
```

Parallel region
OpenMP - example

Objective: vectorise a loop, to map the sin operation to vector x in parallel.

Idea: instruct the compiler on what to parallelise (the loop) and how (private and shared data) and let it do the hard work.

In C:

```c
#pragma omp parallel for shared(x, y, J) private(j)
for (j=0; j<J; j++) {
    y[j] = sin(x[j]);
}
```

In Fortran:

```fortran
$omp parallel do shared(x, y, J) private(j)
do j = 1, J
  y(j) = sin(x(j))
end do
$omp end parallel do
```

Number of threads is set by environment variable `OMP_NUM_THREADS` or programmed for using the RTL function `omp_set_num_threads()`.
MPI - Message Passing Interface

http://www.mpi-forum.org/

MPI is a specification for a Distributed-Memory API designed by a committee for Fortran, C and C++ languages.

• **Two versions:**
 – MPI 1.0, quickly and universally adopted (most used and useful)
 – MPI 2.0, is a superset of MPI 1.0 (adding parallel I/O, dynamic process management and direct remote memory operations) but is not so popular.

• **Many implementations**
 – open software (MPICH, MVAPICH, OpenMPI)
 – vendor (HP/Platform, SGI MPT, Intel).
MPI implementation components

• **Libraries** covering the functionality specified by the standard.
• **Header files**, specifying interfaces, constants etc.
 - C/C++: mpi.h
 - Fortran: mpif.h
• **Tools** to compile and link MPI applications (wrappers around serial compilers)
 - Fortran: mpif77, mpif90
 - C: mpicc
 - C++: mpicxx, mpiCC
• **An MPI application launcher** (mapping processes to CPUs)
 mpirun -np <n processes> <executable>
MPI - overview

- **Processes** (MPI tasks) are mapped to **processors** (CPU cores).

- **Start/stop mechanisms:**
 - `MPI_Init()` to initialise processes
 - `MPI_Finalize()` to finalise and clean up processes

- **Communicators:**
 - A communicator is a collection (network) of processes
 - Default is `MPI_COMM_WORLD`, which is always present and includes all processes requested by `mpirun`
 - Only processes included in a communicator can communicate

- **Identification mechanism:**
 - Process id: `MPI_Comm_rank()`
 - Communicator size (number of processes): `MPI_Comm_size()`
MPI - communication

Inter-process communication (the cornerstone of MPI programming):

- **one-to-one** communication *(send, receive)*
- **one-to-many** communication *(broadcasts, scatter)*
- **many-to-one** communication *(gather)*
- **many-to-many** communication *(allgather)*
- **reduction** *(e.g. global sums, global max/min)* (a special many-to-one!)
- process **synchronisation** *(barriers)*

Domain decomposition

Master-slave
#include "mpi.h"
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 int my_rank, numprocs; char message[100]; int dest, tag, source; MPI_Status status;

 MPI_Init(&argc,&argv);
 MPI_Comm_rank(MPI_COMM_WORLD,&my_rank);
 MPI_Comm_size(MPI_COMM_WORLD,&numprocs);
 if (my_rank != 0)
 {
 sprintf(message,"Greetings from process %d !\0",my_rank); dest = 0;
 tag = 0;
 MPI_Send(message, sizeof(message), MPI_CHAR, dest, tag, MPI_COMM_WORLD);
 } else {
 for (source = 1; source <= (numprocs-1); source++)
 {
 MPI_Recv(message, 100, MPI_CHAR, source, tag, MPI_COMM_WORLD, &status);
 printf("%s\n",message);
 }
 }
 MPI_Finalize();
}
Distributed vs shared memory

<table>
<thead>
<tr>
<th>application feature</th>
<th>shared memory / OpenMP</th>
<th>distributed memory / MPI</th>
</tr>
</thead>
</table>
| **parallelisation** | • easy, incremental (parallelising small parts of the code at a time)
• mostly parallelise loops | • relatively difficult (tends to require a all-or-nothing approach)
• can be used in a wider range of contexts |
| **scaling** (hardware view) | both expensive (few vendors provide scalable solutions) and cheap (multi-core workstations) | • relatively cheap (most vendors provide systems with 1000’s of cores)
• runs on both shared and distributed systems |
| **scaling** (programming view) | small/simple programs are easy and fast to implement | even small/simple programs involve large programming complexity |
| **maintainability** | code is relatively easy to understand and maintain | code is relatively difficult to understand |
| **readability** | small increase in code size, readable code | tends to add a lot of extra coding for message handling, code readable with difficulty |
| **debugging** | • requires special compiler support
• debuggers are extension of serial ones | • no special compiler support (just libraries)
• specialised debuggers |
Distributed vs shared memory paradigm

Which problems are suited to **Distributed Memory Processing**?

- **Embarrassingly parallel** problems (independent tasks), e.g. Monte Carlo methods.
- **Computation bound** problems (heavy local computation with little data exchange between processes).
 - models with localised data, e.g. PDEs solved using finite elements/volumes (CFD, CHMD, etc.)
 - other models with distributed data: molecular dynamics, etc.

Which problems are suited to **Shared Memory Processing**?

- **Communication bound** problems (much data shared between threads)
 - models with non-local data: e.g. Newtonian particle dynamics
 - Fourier transform, convolutions.
Accelerators - motivation

Moore’s Law (1965):

- the number of transistors in CPU design doubles roughly every 2 years
- backed by clock speed increase, this has correlated with exponentially increasing CPU performance for at least 40 years.

This meant the same old (single-threaded) code just runs faster on newer hardware. No more!

While the “law” still holds, clock frequency of general purpose CPUs was “frozen” in 2004 at around 2.5-3.0 GHz and design has gone multicore.

Performance improvements are now coming from the increase in the number of cores on a processor.
Accelerators – different philosophies

Design of CPUs optimized for sequential code and coarse grained parallelism:
- multi-core
- sophisticated control logic unit
- large cache memories to reduce access latencies.

Design of accelerators optimized for numerically intensive computation by a massive fine grained parallelism:
- many-cores (several hundreds)
- lightweight threads and high execution throughput
- large number of threads to overcome long-latency memory accesses.
Accelerators - examples

NVIDIA Tesla K20X GPU
- 2688 cores
- 6GB GDDR5 memory
- 250 GB/sec memory bandwidth
- 3.95Tflops/sec of peak SP

Intel Xeon Phi 5110 MIC
- 60 cores
- 8GB GDDR5
- 320 GB/s memory bandwidth
- 240 HW threads (4 per core)
- 512-bit wide SIMD capability
Applications should use both CPUs and the accelerator, where the latter is exploited as a coprocessor:

- Serial sections of the code are performed by CPU (host).
- The parallel ones (that exhibit rich amount of data parallelism) are performed by accelerator (device).
- Host and device have separate memory spaces: need to transfer data in a manner similar to “one-sided” message passing.

Several languages/API:
- GPU: CUDA, pyCUDA, OpenCL, OpenACC
- Xeon Phi: OpenMP, Intel TBB, Cilk
Example – CUDA

CPU code

```c
void increment_cpu(float *a, float b, int N)
{
    for (int idx = 0; idx<N; idx++)
        a[idx] = a[idx] + b;
}
void main()
{
    ..... 
    increment_cpu(a, b, 16);
}
```

CUDA code

```c
__global__ void increment_gpu(float *a, float b, int N)
{
    int idx = blockIdx.x*blockDim.x + threadIdx.x;
    if( idx < N)
        a[idx] = a[idx] + b;
}
void main()
{
    ..... 
    cudaMemcpy(da,sizeof(da));
    cudaMemcpy(da,a,N,cudaMemcpyHostToDevice);
    increment_gpu<<<4,4>>>(da,b,16);
    cudaMemcpy(a,da,N,cudaMemcpyDeviceToHost);
    ..... 
}```

One thread per iteration!
OpenACC

http://www.openacc-standard.org/

GPU directive based API (corresponds to “OpenMP” for CPU parallel programming).

- Supported by CRAY and PGI (slightly different implementations, but converging) and soon GCC.
- “Easier” code development – supports incremental development.
- Possible performance loss – about 20% compared to CUDA.
- Can be “combined” with CUDA code.
Accelerators programming

- Accelerators suitable for **massively parallel** algorithms and require **low-level programming** (architecture bound) to have good performances.

- They can effectively **help** in reducing the **time to solution**. However, the effectiveness is **strongly dependent** on the algorithm and the amount of computation.

- The **effort** to get codes efficiently running on accelerators is, in general, **big, irrespectively of the programming model** adopted. However, portability and maintainability of the code push toward directive based approaches (at the expenses of some performance).

- All the (suitable) computational demanding parts of the code should be ported. Data transfer should be minimized or hidden. Host-Device **overlap is hard to achieve**.
Hybrid parallel programming

Hybrid programming (MPI+OpenMP, MPI+CUDA) is a growing trend.

- Take the positive of all models.
- Suits the memory hierarchy on “fat-nodes” (nodes with large memory and many cores).
- Scope for better scaling than pure MPI (less inter-node communication) on modern clusters.
Questions?