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Part 1. Introduction to magnetism

1.1 Origins of magnetism

The phenomenon of magnetism was most likely known by many ancient civil-
isations, however the first recorded description is from the Greek Thales of
Miletus (ca. 585 B.C.) who writes on the attraction of loadstone to iron. By
the 12th century, magnetism is being harnessed for navigation in both Europe
and China, and experimental treatises are written on the effect in the 13th
century. Nevertheless, it is not until much later that adequate explanations
for this phenomenon were put forward: in the 18th century, Hans Christian
Ørsted made the key discovery that a compass was perturbed by a nearby
electrical current. Only a week after hearing about Oersted’s experiments,
André-Marie Ampère, presented an in-depth description of the phenomenon,
including a demonstration that two parallel wires carrying current attract
or repel each other depending on the direction of current flow. The effect is
now used to the define the unit of current, the amp or ampere, which in turn
defines the unit of electric charge, the coulomb.

1.1.1 Ampère’s Law

Magnetism arises from charge in motion, whether at the microscopic level
through the motion of electrons in atomic orbitals, or at macroscopic level by
passing current through a wire. From the latter case, Ampère’s observation
was that the magnetising field H around any conceptual loop in space was
equal to the current enclosed by the loop:

I =

∮
Hdl (1.1)

By symmetry, the magnetising field must be constant if we take concentric
circles around a current-carrying wire. Integrating around such a circular
loop of radius r:

H =
I

2πr
(1.2)
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1.2 Magnetic fields and moments

In magnetism, the analogous field to the electric field E, is the magnetising
field H, which has units A/m. In practice, we often use the field B, which
we call the magnetic field and has the units Wb/m2 or Tesla1. In a vacuum,
H is related to B by the permeability of free space, µ0 which has the defined
value 4π · 10−7.

B = µ0H (1.3)

In the same way that electric dipoles minimise their potential energy by
aligning with an electric field, magnetic dipoles, or magnetic moments, have
some potential energy in a magnetic field which is minimised when they align
with the field. In a magnetic field B, the potential energy of a magnetic
moment m is:

Umag = −m ·B (1.4)

A circular loop of current has an effective magnetic moment given by the
product of the loop area A and the current I:

mcurrent−loop = IA (1.5)

1.3 Magnetic moments of electrons

We know that a current loop produces a magnetic moment — so what is the
magnetic moment of an orbiting electron? An electron travelling at velocity
v around an orbit of radius r corresponds to a current of ev/2πr around a
loop of area πr2), which has a magnetic moment:

m = evr/2 (1.6)

Noticing that this is proportional to vr, we can express this in terms of
the electron’s angular momentum Πe = mevr were me is the mass of the
electron2:

m =
eΠe

2me

(1.7)

Despite this simple argument, it is very close to the precise quantum mechan-
ical description, which only differs by an additional constant factor, which is
called the g-factor, and has the approximate value of ge ≈ 2:

m = ge
eΠe

2me

(1.8)

1There is a fair bit of inconsistency in the names given to these fields: H is sometimes
called the magnetic field, B is sometimes called the flux density. The key is always to look
at the units to see what is being quoted.

2Not to be confused with the magnetic moment m
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So, depending on the electron angular momentum, it will have some magnetic
moment.

Regardless of whether it is orbiting an atom, electrons possess an intrinsic
angular momentum which we call its spin. This is a quantum mechanical
property, labeled with the quantum number S, which can take one of two
values: S = 1/2 or −1/2. We often call the S = 1/2 state, spin-up, and the
S = −1/2, spin-down. The resulting angular momentum along a particular
direction is ~S. We use Eq. 1.8 to calculate the magnetic moment from this
angular momentum:

m = ge
e~

2me

S (1.9)

Thus, the magnetic moment of an electron depends on the g-factor ge, the
spin state S, and a bunch of fundamental constants which are usually lumped
together and named µB, the Bohr magneton:

m = geµBS (1.10)

The Bohr magneton is thus defined as

µB =
e~

2me

= 9.27 · 10−24 Am2. (1.11)

Key result
All electrons possess a magnetic moment, whose value is (approximately)
±µB.

The total angular momentum J of an electron in a general atomic orbital
has two parts: the intrinsic spin S, and the angular momentum of the partic-
ular orbital it is in L. In practice, the orbital angular momentum L is locked
into the crystal structure and does not respond to an applied magnetic field
(this is known as quenching of the orbital moment). Such environmental ef-
fects can be bundled into the electron g-factor, so this takes values that will
differ slightly from 2, depending on the precise environment of the electron.

1.4 Magnetic moments of atoms

Having established that individual electrons have magnetic moments, we now
look at how these may lead to magnetic moments in atoms. Electrons occupy
well-defined orbital states in atoms (e.g. 1s, 2s, 2p etc.). Although, electron
are fermions and therefore cannot occupy exactly the same state, each of
these orbital states can accommodate two electrons because the electrons
can be spin-up or spin-down. If one electron occupies an atomic orbital, it
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Ion Mn2+ Fe2+ Co2+ Ni2+ Cu2+ Zn2+

Z 25 26 27 28 29 30
m 5µB 4µB 3µB 2µB µB 0
S 5/2 2 3/2 1 1/2 0

Table 1.1: Magnetic moment of important divalent transition metals

is free to take either spin state, however if two electrons occupy the orbital,
they must take opposing spin states and thus their magnetic moments cancel
out. The total spin state of the atom can then be determined by considering
the net spin of the constituent electrons. For example, hydrogen has one
electron in the 1s state, so it is net S = 1/2 , or in other words magnetic
moment ∼ µB. On the other hand, helium has two electrons in the 1s state
(1s2) which must anti-align, giving net S = 0, or zero net moment.

For larger atoms we use one of Hund’s rules to work out how electrons
occupy atomic orbitals: “in each electron shell the spins align to produce
the largest magnetic moment”. For example, there are five d-shell orbitals.
These are filled sequentially with one electron in each orbital state, such that
an atom/ion with five d-shell electrons (e.g. Mn2+) is S = 5/2, or a magnetic
moment 5µB. Subsequent electrons added to the d-shell must then pair up
with the others, such that the filled 10-electron d-shell has zero net moment.

Fe has electron configuration 1s22s22p63s23p63d64s2. The Fe2+ ion loses
the two 4s electrons. All filled orbitals can be ignored as they must have
no net moment. This leaves 3d6, which fills as (↑↓, ↓, ↓, ↓, ↓) and has net
moment 4µB (S = 2). The Fe3+ ion loses an additional d electron and has
net moment 5µB (S = 5/2).

1.5 Magnetic susceptibility

In the last course on the Electric and Optical Properties of Materials we
saw how a material could be made up of many permanent electric dipoles p.
The potential energy of such dipoles an electric field E was: U = −p · E,
and so the application of an electric field can produce some alignment of the
dipoles to give an overall electric polarisation P in the material. Thus, the
electric displacement field D within a material arises from a combination of
an applied electric field E, and a contribution from the electric polarisation
of the material P .

D = ε0E + P (1.12)
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Given the polarisation was itself proportional to E:

D = ε0E + χeε0E = ε0(1 + χe)E = ε0εrE (1.13)

The situation for magnetism is entirely analogous. Materials may also possess
magnetic moments, m, which sum up to give an overall magnetisation M in
the material, per unit volume:

M =

∑
imi

Volume
(1.14)

Thus, the magnetic field in a material is due to contributions from both H,
and this magnetisation, M :

B = µ0(H +M) (1.15)

In many cases3, this magnetisation is proportional to the applied magnetising
field H, and so we define the magnetic susceptibility χ, as the magnetisation
achieved given a certain magnetising field:

χ =
M

H
(1.16)

It follows that:
B = µ0H(1 + χ) = µ0µrH, (1.17)

thus defining the relative permeability µr. These analagous quantities in
electricity and magnetism are summarised in Table 1.2.

3Note that there are important cases where the magnetisation M is not proportional
to the applied field H, for example a permanent magnet can have magnetisation even in
the absence of any applied field.
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E H
Electric field (V/m) Magnetising field (A/m)

D B
Displacement field (C/m2) Magnetic field (Wb/m2)

D = εE B = µH

P M
Polarisation (C/m2) Magnetisation (A/m)

P = χeε0E M = χH
p m

Electric dipole (Cm) Magnetic moment (Am2)
Up = −p · E Um = −m ·B

ε0 µ0

vacuum permittivity (F/m) vacuum permeability (H/m)
εr µr

relative permittivity relative permeability
εr = 1 + χe µr = 1 + χ

V I
Voltage (V) Current (A)

q Φ
Charge (Coulomb, C) Magnetic Flux (Weber, Wb)

C L
Capacitance (Farad, F) Inductance (Henry, H)

C = q/V L = Φ/I

Table 1.2: Analagous quantities in electricity and magnetism
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