SOME REMARKS ON THE IMPLICATIONS OF THE DOUBTFUL
GAP PROBLEM FOR HUMAN SENTENCE PROCESSING'

Hans van de Koot

Abstract

In this paper I argue that, contrary to popular opinion, the so-called doubtful
gap problem is not beyond the abilities of a strictly deterministic parser such
as Marcus’ (1980) Parsifal. I develop a chain algorithm for this parser that is
nonstandard in that it divorces the process of trace indexing from that of trace
creation. This algorithm will account for the data, on condition that sentences
with multiple doubtful gaps (i.e. with globally ambiguous chains) do not exist.
It is also shown that a set of apparent counterexamples can be reanalyzed as
parasitic gap structures.

1 Introduction

In this paper I will be concemed with a special type of parsing problem that is
often referred to as the doubtful gap problem. One of the many manifestations
of this phenomenon is illustrated in (1) below:

(1) (@) who, did you expect [t to make a potholder]
(ii) who, did you, expect {[,PRO, to make a potholder for ]}

Whatever the exact properties of the human parser one assumes, upon
encountering the verb expect it has to decide whether to create a CP-
complement with a PRO subject or whether the complement is in fact an IP,
the specifier of which is the foot of the chain headed by who. It should be
observed that this decision is locally ambiguous: if the parser had access to the
relevant information in the part of the sentence to the right of its current locus
of attention, then it could resolve the ambiguity. Unfortunately, problems of this
kind are potentially very difficult because the disambiguating material can be
arbitranily far away from the point of local ambiguity.

As we will see shordy, the apparent lack of boundedness makes the
doubtful gap problem a sericus challenge for researchers who have claimed
that human sentence processing is strictly deterministic (in the sense that the
parser does not simulate nondzterminism by means of backtracking or parallel
processing?, e.g. Marcus 1980 and Berwick & Weinberg 1984). It would in fact

'This paper is an extensively reworked version of a talk that [ gave to the
Annual Meeting of the Dutch Linguistic Society, which was held at the University
of Leiden on the 21st of January 1989.

’In the case of backtracking, the program is constructed in such a way that it

orders its hypotheses about the input and then tests each hypothesis against the input
string in tum. The program accepts the input if one or more of its hypotheses lead

338



seem that the deterministic parsers proposed by these authors cannot deal with
the full range of doubtful gaps that we are about to consider. This has led many
researchers to the conclusion that the human sentence processor must be a
parser of the backtracking variety or one that can carry along more than one

parse tree in parallel. The aim of the present paper is to show that that
~ conclusion does not necessarily follow.

In section 2, I first introduce some of thte basic properties of the Marcus
parser. This is followed in section 3 by a survey the range of problems
introduced by doubtful gaps. It will become clear that the strictly deterministic
parsers proposed by Marcus (op. cit.) and Berwick and Weinberg (op. cit.) dealt
with the doubtful gap problem in a much simplified form. These authors only
concemed themselves with ‘easy’ cases of wh-movement from subject or object
position, and even for these simplest cases they ignored doubtful gaps that are
disambiguated by material to the right rather than by material to the left of the
gap. My survey is based on part of Fodor's (1978) article 'Parsing Strategies
and Constraints on Transformations', which contains many important data and
a good survey of parsing strategies that do not properly account for them.

With this background we take a closer look at strictly deterministic parsers
in section 4. Can they be made to account for the facts? I propose an altemative
chain algorithm that will do the job, provided that sentences with multiple
doubtful gaps do not exist. The algorithm is based on a suggestion by Rizzi
(1988) that referential indices must be licensed by a O-role. I translate Rizzi's
idea into a condition on trace indexing, which, in conjunction with a quite
straightforward assumption about the visibility of elements at LF, yields the
desired consequences.

As is pointed out in Barton, Berwick and Ristad (1987), powerful problem
solving techniques (like backtracking) implicitly assume that ‘the natural
problem has no special structure that would support more specialized processing
methods - despite all the principles, representational details, nooks, and crannies
of grammatical theory’. We will sce that the doubtful gap problem has a special
structure that will yield 10 something less computationally expensive than
backtracking.

Finally, we compare our solution to a modification of the Marcus parser
proposed by Baant and Raaijmakers (1988), which, like ours, is intended as an
antidote to the doubtful gap problem, and show that Baart & Raaijmakers’
algorithm creates as many problems as it solves. This will leads us into a
discussion of some data that appear to involve multiple doubtful gaps and
therefore pose a threat to our analysis. | argue that these 'multiple doubtful
gaps’ arc really parasitic gap constructions.

I conclude that the proposed algorithm allows a strictly deterministic
solution to the problems posed by doubtful gaps, that it can be readily
incorporated into the Marcus parser, and that it avoids the unattractive efficiency
consequences of implementing backtracking search or full-scale parallelism.

10 a success state. Aliematively, the program could pursue all altemative hypotheses
in parallel. Here, too, we say that the program accepts the input if one or more
altemative pathways lead to a success state. The Marcus parser is deterministic in
the nontrivial sense that it uses neither backtracking nor parallel processing to
simulate nondeterministic operation. Marcus uses the notion "strict determinism™ to
refer to this much narrower concept and we will follow this practice herc.

339



2 The Marcus parser

The Marcus parser has been developed on the basis of the Determinism
Hypothesis: 'the syntax of any natural language can be parsed by a mechanism
which operates swiclly deterministically in that it does not simulate a
nondeterministic machine’ (Marcus 1980: p.2). Every eaction of a strictly
deterministic machine is completely determined by its input and its internal
state. This means that it cannot make 'guesses’ about the proper sequence of
action for a given input. Thus, such a machine is not allowed to compute two
or more sequences of actions in parallel (paralle] processing) or to withdraw a
sequence of actions and make a new ’guess’ in case it fails to accept a given
input (backtracking). The Marcus parser operates strictly deterministically in
that (i) it builds only one syntactic tree representation of a sentence, (ii) it does
not carry along in parallel a representation of other possible parses, and (iii) it
cannot withdraw previous decisions about the structure of sentences. These three
properties help to guarantee that the parser uses only a limited number of
memory cells. This restriction on memory capacity is essential: the Determinism
Hypothesis would be greatly weakened if the parser were allowed to circumvent
guesses by means of a very large memory capacity.

Marcus shows that a deterministic machine must have the following three
propertics: (i) it must be at least partially data driven, i.e. its actions must be
partly determined by the input, (i) it must be able to reflect expectations on the
basis of the partial structures built up during the parse, and (iii) it must have
some sort of look-ahead facility. The Marcus parser uses two very simple data
structures from which it derives these properties. First, it has access to part of
the parse tree it has built so far, the Active Node Stack. This stack of
uncompleted nodes is the parser’s ‘left context’. The stack records the parser's
expectations about the input by associating with each node in the stack a set of
rules that are needed to build that node. Such a set of rules is called active
when the node with which they arc stored becomes the current node (i.e. the
one currently being built), The parser is also equipped with a look-ahead buffer
consisting of only three memory cells. The buffer is the parser’s ‘right context’
and represents its data driven mode of operation. Marcus claims that these
information facilities suffice to ensure that "all sentences which people can parse
without conscious difficulty can be parsed strictly deterministically’ (Marcus
1980: p.6).

The two data structures are manipulated by the parser's grammar, which
operates by auaching constituents from the buffer to the constituent at the
bottom of the stack (we will think of the stack as growing downward) until
that constituent is complete, at which time it is popped from the stack and
inserted in the first cell of the buffer. If the constituents in the buffer provide
clear evidence that a constituent of a given type should be initiated, a new
node of that type can be created and pushed onto the stack. It is not particularly
relevant for what follows that one has detailed knowledge of the parser’s
grammar rules, so I will not say more about them. However, it would be helpful
if the reader had a rough urderstanding of what a stack representation in the
Marcus parser looks like, ! present an example below (from Berwick &
Weinberg 1984: p.151). By the time the parser is reading kissed in the boys
thought that Sue had kissed them, it has already built up a parsed representation
of the sentence as in (2):



(2) Active Node Stack (4 deep)

1 IP (least recently built,
/ \ uncompleted phrase)
NP I’
/ \ |
the boys I
past

2 VP

/
v

|
thought

3 cp
/
C

i
that

4 Ip (most recently built, uncompleted
/ A\ phrase)
NP I’
I |
Sue I
had

When the current node in the stack (i.e. the most recently built node) is
complete, it is popped from the stack and dropped in the first cell of the
parser’s buffer for subsequent attachment to the new current node. When the
parse is ready, the complete structure for the input sentence will be in the first
cell of the buffer and the stack will be empty.

Berwick and Weinberg's investigation is based on a slightly modified
Marcus parser which realizes a version of the Government Binding Theory.
Even though there is no one-to-one relation between rules and operations of
the grammar and rules and operations of the parser, the modified Marcus parser
makes direct use of the grammar in that it makes crucial reference to properties
of lexical items, in accordance with the Projection Principle (Chomsky,1981).
More generally, the parser embeds the key principles of Government Binding
Theory fairly directly.

The main problem for a strictly deterministic parser is local ambiguity.
The parser can construct just one syntactic tree representation for every sentence
and it cannot undo previous actions. This means, in effect, that the parser must

resolve any ambiguity it comes across before it can continue the parse. Consider
the following data:

3 W Who, did John kiss t,
(i) What; did John say t; that Frank believed ¢, that Sue said .
t; that Bill would like 1o eat

(i) Did John say that Frank believed that Sue said that Bill would
like 10 eat

341



Structure (3i), in particular the insertion of the postverbal trace, is unproblematic
for the parser, as it has difect access to the properties of lexical items. Hence,
recognition of the verb kiss entails retrieval of this item’s subcategorization
frame as well. As kiss is a transitive verb, the parser will expect 10 see a NP
next. If there is no phonological NP, then the parser will attach an empty NP
(a trace) as the object of kiss. Note that strictly local information (i.e.
government) precludes insertion of PRO. Now consider (3ii). Ear may be either
transitive or intransitive. Given the assumption of strict determinism, the parser
must decide what to do correctly before it can proceed to the next item in the
input stream. Clearly, the ambiguity can only be resolved by consulting the left
context to see if there is an appropriate antecedent. If an appropriate antecedent
is found, the parser will assume that ea is transitive and insert a trace. If, on
the other hand, the left context does not contain an appropriate antecedent, the
parser will do nothing and move on to the next item in the input stream.

As can be seen in (3ii), the site for trace insertion can be arbitrarily far away
from its phonological antecedent. This means that the relevant parsing rule
would have to refer to a potentially unbounded left context (assuming now that
there are no intermediate traces). Such a rule could be finitely stated in terms
of an essential variable, but this option is not available to the Marcus parser.
This is because the parser’s stack is manipulated by a finite control table that
only uses actual grammar symbols. It follows that a strictly deterministic parser
can only detect an antecedent in a literally finite left context. Hence, the parser
must have a trace insertion procedure for intermediate traces.

It should be evident from the foregoing that the property of strict
determinism imposes some locality constraint on trace insertion. Both Marcus
(1980) and Berwick & Weinberg (1984) go in fact one step further in claiming
that a strictly deterministic parser explains the existence of the Subjacency
Condition on overt syntactic movement:

) Subjacency
No rule can involve X and Y in the configuration:
(. X faelp YD )XD
where o and B are bounding nodes.

For critical discussions of this claim I refer the reader to Fodor (1985) and
Van de Koot (1985, 1987, to appear). In what follows I will assume the
analysis put forward in Van de Koot (to appear) that a suitably restricted
version of the Marcus parser imposes a constraint on syntactic movement that
is much stronger than Subjacency. What the proposed restriction amounts to is
that, in addition to the buffer cells, only the current node in the stack should
be accessible 1o parsing rules®. It follows that the parser will impose a locality
constraint on traces left by syntactic movement that is similar to antecedent
governed. On this view a simple case of wh-movement like (5i) will be assigned

*In Parsifal and in Berwick & Weinberg’s modified version of that parser both
the current node and the so-called curreat cyclic (the first cyclic node in the stack)
were accessible 10 parsing rules. This rendered the stack non-standard, 10 say the
least (as was acknowledged by Marcus). My “restriction” is therefore not really a
restriction: it just amounts to stating the obvious, viz. that a stack is a last-in-first-
out memory device.

342



the structure (5ii):

) ) who did John kiss
(i)  who, did [ & [z John [ & [w Kiss t]]]]

In other words, the only way in which the parser can encode the presence of
an antecedent is by adjoining a trace 1o every maximal projection c-commanded
by the antecedent, until a gap is detected. This proposal would seem to run into
rather obvious problems with respect to A-chains. Consider a standard case of
NP-movement:

(6) John was believed [yt' to have been [kidnapped t]]

NP-movement is not assumed to leave a trace in every maximal projection that
intervenes between the head and the foot of the chain. In terms of the proposed
parser this has the undesirable consequence that neither of the two traces
indicated in (6) has an accessible antecedent at the point where it should be
created.
In order to obviate these problems, I assumed (i) that the SPEC of VP
and the SPEC of AP are A-positions, and (ii) that adjoined positions are A’-
positions, as is standard. The first of these assumptions is based on the idea
that the position of subjects at D-structure is specVP universally, as has been
proposed by Kuroda (1986)°. Kuroda points out that the conceptual
simplification that results from including the expansion of C and I in the general
X'-schema is considerably weakened by the fact that the category V conforms
only defectively to the schema of the extended X'-theory. His paper investigates
the consequences of the conceptually simplest assumption, viz. that specVP is
the D-structure subject position, with some elegant results.
* Given the above assumptions about specVP, the parser will be able to
construct a proper chain for NP-movement cases, because in cases where raising
or passive is possible specVP/specAP is a 8-bar position:

@ W [John was [t killed 1]}
(ii) [John [yt seems [t 10 [t win]]]
(i)  [gJohn [yt is [t likely [t 1o [wt die]]l]

Second, super-raising and super-passive are excluded for two independent
reasons:

8 * [iJohn [t seems [(t) that [it [vt is [t cenain [t to (v,
win]]|1]1]}
(i) * [John [y, seems [(1) that (it [y, was {,pt, killed 1]]]}])

First, in both (8i,ii) a C-projection intervenes, which does not have an A-
position. Hence, chain formation is blocked and both sentences are ruled out.
Second, in both (8i,ii) one of the intermediate positions (specIP) is filled,

‘Koopman and Sportiche (1985) propose an analysis that is rather similar 10
Kuroda's, except that in their view the D-structure subject is generated in a VP-
adjoined position, i.e. it is the subject of a small clause,

343



effectively blocking chain formation. lLe., we assume that chain links are
coindexed at the moment of their creation. Hence, 2 dummy element like it
cannot be coindexed with a governing trace, as it is part of the parser’s input
and not a created chain link®,

Before we move on to consider the full range of doubtful gap problems,
let quickly summarize the main points sofar:

@) Deterministic parsers have very limited access to their left and right
context;
(ii) Deterministic gap detection relies on a chain algorithm that creates

intermediate traces to guarantee the local availability of antecedents;
(iii) If a deterministic parser detects a potential gap and its current node

contains a proper antecedent, then it inserts a trace. It is this behaviour

that allows it to handle locally ambiguous cases like (3ii,3iii) above.

3 The doubtful gap problem: Foder (1978)

In her article ’Parsing Strategies and Constraints on Transformations’, Fodor
(op. cit.) shows that gap filling introduces parsing difficulties that have no
parallel in the grammar. As an example, consider the data below®:

Q) @ who, did you expect [t to make a potholder]
(ii) who, did you, expect [o{zPRO, to make a potholder for t]]

When the parser is analyzing expect, it must decide whether to create an IP-
complement with a trace in its specifier or a CP-complement with a PRO
subject. But in order to do so, it must have access to material that it has not
scen yet, i.e. material in its right context. Clearly, gap filling is not as easy as
it might have scemed from such data as in (3). As ancther example, consider
(10). Here, too, the parser must have access to material to the right of the
doubtful gap in order to resolve the local ambiguity induced by this gap:

(10) what, do you want Mother to sing (t) to Mary about

Fodor discusses three models of gap finding that use different sirategies to deal
with doubtful gaps: the last-resort model of gap finding, the first-resort model
of gap finding, and the lexical-expectation model of gap finding. We will
discuss each of these in turn.

3.1 The last-resort model of gap finding. A parser with a last-resort strategy
for gap detection will only assume a gap in the input if all other structural
hypotheses about the locally ambiguous chunk have failed. This means that it
will always detect doubtless gaps on its first pass through the sentence, but
that it will overlook all doubtful gaps. Obviously, if the doubtful gap was a

*It is, we bar accidental coindexing.
SAll data in this section are from Fodor (1978), unless indicated otherwise.

Fodor discusses these data in terms of Aspects style nules. I will discuss her data
in terms of current grammatical notions.

344



false one, the parser outputs a correct derivation and even may have saved
processing effort. On the other hand, if the doubtful gap was a true one, the
analysis will halt at some point and will have t0 be revised. This model
therefore predicts that (a) sentences in which the true gap is a doubtful gap
should always be harder to parse than sentences in which the true gap is a
doubtless gap and furthermore that (b) sentences with a false doubtful gap
should be just as easy to parsc as sentences with no doubtful gap at all.
Unfortunately, these predictions seem to be false. The pair of sentences (11) is
a counterexample to prediction (a):

(11) @) which book; did the teacher read (1) to the children
Gi) which picture; did the teacher show t, to the children

Intuitively, sentence (11i) is just as easy to parse as (11ii). However, and Fodor
acknowledges this point, one might argue that our intuitive judgements of
processing complexity are just not sophisticated enough to reveal a difference.
She counters this view of the matter by arguing that it does no justice to our
perception of the quite comparable sentences in (12):

(12) @) which book; did the teacher read (1;) to the children from ¢,
(ii) which student; did the teacher go to the concert with t,

Fodor argues that ‘there is a rather clear intuition that [(12i)) is harder 1o
process than [(12ii)]".

These sentences are also counterexamples lo prediction (b), since the
relative difficulty of (12i) must apparently be attributed to the false doubtful
gap:

"This gap is encountered before the true gap, and apparently
*decoys’ the parser; it seems 10 be taken at least momentarily
as the true gap, giving the analysis The teacher did read which
book..., which must subsequently be corrected when the true
gap is found after from. This explanation is supported by the
fact that [(12i)) is also more difficult than [(11i)]. [(12i)] and
((11i)] start out identically, and it seems that in both the
doubtful gap is noticed and hypothesized to be the true gap.
For {(11i)] this hypothesis is correct and the analysis proceeds
smoothly; but for [(12i)] this hypothesis turns out to be wrong
and the analysis is disrupted.’

She concludes that, since all doubtful gaps she has discussed are detected as
they are encountered, the last-resort model must be false.

3.2 The first-resort model of gap finding. The first-resort strategy is
exemplified in the original Marcus parser and in both of the modified Marcus
parser that we have mentioned (Berwick & Weinberg 1984 and Van de Koot
(to appear)): these parsers assume a gap if the left context of the parse and
local evidence is compatible with that assumption. By compatibility with local
evidence I mean that the parser should not drop a trace for an antecedent of
category X if the hypothetical gap position is immediately followed by a phrase
of category X. The first-resort model predicts that (a) sentences with a true

345



doubtful gap are as easy to parse as sentences with a true doubtless gap and
that (b) sentences with a false doubtful gap should be harder to parse than
sentences containing no doubtful gap at all. Even though these predictions are
compatible with the sentences in (11) and (12), other examples show that they
are incorrect:

13) () which student; did the teacher walk (1) to the cafeteria
(ii) which student; did the teacher walk (1) to the cafeteria with t;

Fodor suggests that (13ii) is easier to parse than (13i) and that this is explained
on the assumption that the parser overlooks the doubtful gaps in both sentences,
which leads to error in (13i) but facilitates the analysis of (13ii). Therefore, the
first-resort model must be false as well. If we now compare (13i) with (11ii),
then we see that prediction (a) of the first resort model is disconfirmed by the
fact that the doubtful gap in (13i) is harder to process than the doubtless gap
in (11ii). Similarly, prediction (b) is disconfirmed by comparing (13ii) and
(12ii): (13ii) is not harder to process than (12ii), which suggests that its doubtful
gap does not decoy the parser.

3.3 The lexical-expectation model of gap finding. Fodor concludes that,
although neither the last-resort nor the first-resort strategy seems to be
completely correct, the data nevertheless suggest that the human sentence
processor ‘behaves like a first-resort device for some gaps, and like a last resort
device for others’. She then points out that Wanner and colleagues (in a series
of papers) have developed a model that will account for all the data she
discusses ("though they themselves make no mention of it’). The proposal of
Wanner and colleagues is to associate each lexical item with a ranking of
preferred complements. In particular, a verb like read will be associated with
the ranking in (14), while a verb like walk will be associate with the ranking
in (15) (where A and B stand for altematives such as DET, N, or Pronoun,
and @ stands for the empty set):

(14) [~ =
READ:
NP= |A
GAP
B
@ —
(15) — —
WALK: [}
NP= |A
GAP
B

346



Unambiguously transitive or intransitive verbs represent the extreme cases where
there is just one hypothesis and hence no ranking of hypotheses. This model
allows the GAP hypothesis only as an aliernative to other hypotheses about the
internal structurc of an NP and not as an alternative to other hypotheses at the
phrasal level. Therefore, the model predicts that a GAP will be detectable in
proportion to the expectation of a full noun phrase in that position. Fodor
concludes that the lexical-expectation model accounis in impressive detail for the
data she discusses.

3.4 Some Remarks about Perceived Processing Complexity. Before I discuss
doubtful gaps in the context of deterministic parsing, I would like to say a few
words about the concept of 'perceived processing complexity’. As we have just
seen, Fodor relies on her inwitive judgements of processing complexity to
choose among the various models of gap finding she discusses. There are two
major problems with this approach, however.

It would seem that Fodor implicitly assumes that the human parser is of
the backtracking variety. Although she is not explicit about this, it is implicit
in her account of perceived processing complexity and in her terminology (e.g.
the parser can be momentarily *decoyed’ by a doubtful gap). With this in mind
consider such a well-known example of the garden path phenomenon as The
cotton clothing is made of grows in Mississippi. Most people who come across
this sentence (and ones similar to these) for the first time tend to experience a
severe disruption of their parser as soon as they get to the word grows. The
disruption is caused by one’s initial failure 10 identify the fragment clothing is
made of as a relative clause. What such examples hammer home rather
forcefully is that a failure of the parsing process gives rise to a perception of
extreme ‘complexity’ (‘disorientation’ might be more appropriate), not just 1o
some slightly increased complexity.

Another problem with the assumption that the human sentence processor
is a backtracking parser is that such parsers have a mather prominent
characteristic: they backtrack all the time (as is well-known to anyone who has
ever seen a trace of the parse of a Prolog program). It is hard to see how onc
could possibly discriminate between the added processing complexity of the
sort caused by doubtful gaps, as in (13i), and the ’background’ processing
complexily of the parser’s standard backtracking behaviour. One might object
that a suitably restricted backtracking parser would only backtrack if it was
really necessary. Although such an objection may seem justified, it raises (wo
new problems: (i) it must be shown that the restrictions on the backtracking
parser yicld exactly the observed processing complexity (which seems far from
trivial, to put it conservatively; anyone who has ever tried 10 tweak a
backtracking parser into selective backtracking will acknowledge that such a
task is extremely cumbersome); (ii) why is backtracking restricted in precisely
these ways and why does the brain not exploit the advantages of full
backtracking? In short, an account of perceived complexity judgements in terms
of a backtracking parser would scem to requirc extensive justification.

347



4 A strictly deterministic soiution to the doubtful gap problem: separating
trace creation and coindexing

As I pointed out in the previous section, the parsing models Fodor discusses in
her article are all of the backtracking type. And indeed, the existence of
doubtful gaps does not secem to agree very well with strict determinism. A
Marcus-type parser would appear to be a first-resort mechanism by definition.
After all, when it is confronted with a doubtful gap, its strictly detenministic
mode of operation forces it to decide what action to take before it can continue.
Because of its very limited ability to look ahead and see what the right context
looks like, rightward disambiguation is usually beyond its scope, which
condemns it to a first-resort strategy and therefore to occasional errors.

There is a way, however, to avoid the conclusion that Marcus-type parsers
are first-resort gap fillers by definition. So far we have (tacitly) assumed that
creating a trace involves coindexing it with its antecedent. This is by no means
a necessary assumption, however. Rizzi (1988) proposes to reinstate the notion
of ‘'referential index’ in its full glory and to ’restrict its use to cases in which
a referential index is made legitimate by certain referential properties of the
element bearing it' (Rizzi op. cit.: p.2). He goes on to suggest that the use of
referential indices should be restricted 1o cases made legitimate by the following
principle:

(16) A referential index must be licensed by a referential 8-role
This is very much the original Aspects approach to indices:

'Suppose that certain lexical items are designated as referential
and that by a general convention each occurrence of a
referential item is assigned a marker, say, an integer, as a
feature [fn. omitted]. . . . The semantic component will then
interpret two referential items as having the same reference
just in case they are suictly identical - in particular, in case
they have been assigned the same integer in the deep
structure.’

(Chomsky 1965:145-146)

I will not go into the details of Rizzi's paper, which is entircly devoted to an
extensive recasting of the ECP, but will simply use the same basic idea about
the status of referential indices for my own purposes.

In particular, let us assume that the parser cannot assign an index to a
chain link unless it has unambiguously identified the O-marked foot of the
chain. Suppose furthermore that adjuncts and adjunct-operators carry an inherent
8-role’. Finally, assume that any element (including an empty operator) becomes
invisible in the LF-component, unless it has been associated with a referential

'See Van de Koot (1990) for a detailed treatment of the analysis and
interpretation of adjunct-operator chains in deterministic parsing.

348



index".

Chain construction could now proceeds as follows. Suppose the current
node contains an overt argument-operator. Then the parser adjoins an unindexed
trace to every following maximal projection until it detects a gap. We now have
to consider two cases.

Case (i). Suppose the detected gap is a doubtless gap. Then the parser
drops an indexed trace and aborts its chain algorithm. That is, it does not adjoin
a trace to the next maximal projection. When the parser has come to the end
of the input, it starts attaching completed constituents. Let us refer to this as the
parser’s 'backward mode’. If the parser is in backward mode, and it drops a
completed constituent in the buffer that contains an indexed trace, then it
coindexes that trace with the antecedent trace (or the overt operator, as the case
may be) in the current node. This process continues until the parse tree is
complete. The ocutput will contain a chain in which all chain links are
coindexed, as required.

Case (ii). The second case we have to consider ariscs when the detected
gap is a doubtful gap. In this case the parser drops an unindexed trace, and
continues to adjoin unindexed traces. We now have to consider three subcases:
(a) no further gaps are detected, (b) a doubtless gap is detected, or (c) one or
more additional doubtful gaps are detected. Of thesc only the first case is
straightforward. Suppose no further gaps are detected. Then, when the parser
switches into backward mode and revisits VP in which it found the first
doubtful gap, the completed phrase in the first cell of the buffer will contain
an unindexed trace. This provides unambiguous evidence that the doubtful gap
is in fact the true gap and the parser now indexes the trace. The rest of the
indexation process now proceeds as in case (i) above.

Subcases (b) and (c) form a dangerous combination. To see why, consider
the following questions. First, suppose a sentence could really contain two or
more doubtful gaps, then how would we represent the global chain ambiguity
that would arise in such cases? Second, suppose the parser had indeed found
one or more doubtful gaps. Suppose further that, when it switched to backward
mode, it dropped an indexed trace for the most deeply embedded doubtful gap.
Then an index would be passed up on every subsequent step. Then, by the time
the parser revisited the VP which contained the one but most deeply embedded
doubtful gap, it would have no way of determining whether the index that was
passed up originated in a doubtful gap or a doubtless gap. The same ambiguity
would arise if we took the option of not passing up an index. Le. during the
backward mode we would have no way of distinguishing subcase (b) from
subcase (c).

Secing that multiple doubtful gaps complicate the parsing problem still
further, let us make the simplifying assumption that muliiple doubtful gaps do
not in fact cxist. There are some apparent counterexamples to this claim, 10 be
discussed in the next section, which all involve multiple gaps that are not
clausemates. If we restrict attention to competing gaps that are clausemates,
however, as in ail of Fodor's examples (except (9), see below), then the

*Van de Koot (1990) assumes in addition that any element that delimits a
range (i.e. any overt wh-clement) is visible at LF. This additional assumption is
crucial in accounting for the parser’s robust behaviour under subjacency violations,
but plays no role in the discussion that follows.

349



following observation seems to be correct: if a doubtful gap in the complement
position of a verb is disconfirmed by the detection of a gap to its right, then
that newly discovered gap will always be a doubtless gap, overtly marked by
the presence of a preposition®. Cases like (9) above create special problems.
The important thing to notice about sentcnces like these is that the gap in
subject position is not doubgful. It is ambiguous (between a PRO or a trace)”.
Sentences like (9) will yield 1o a strategy that is quite similar to that discussed
under case (i) above. Upon encountering the. ambiguous gap, the parser could
postpone creating the CP and IP projections unitil it had parsed the rest of the
sentence. During the rest of the parse it would continue to adjoin unindexed
traces to every new maximal projection, so as to guarantee the presence of a
local antecedent in case it detected a doubtless gap. By the time the parser
returned to the ambiguous subject gap it would either have an unindexed or an
indexed trace in the position adjoined to the complete VP in the first cell of the
buffer, depending upon whether it had found a doubtless gap. This would give
the parser the required information for disambiguation of the subject gap.

Suppose then that these problems can be dealt with satisfactorily. This
will clear the way for the assumption that muitiple doubtful gaps do not exist.
Given this, we can ignore subcase (c), which involved two or more doubtful
gaps. What about subcase (b)? Suppose that after having found a doubtful gap,
the parser detects a doubtless gap. In that case, we will assume that it drops
an indexed trace for the doubtless gap and aborts its chain algorithm. When it
switches into ‘backward mode’, it takes care of the indexing of the chain links
as before. When the the VP that contained the doubtful gap becomes current
again, the parser does not index the trace for the doubtful gap, which will
therefore be invisible at LF, as required".

’As is well-known, things become rather more complicated if the moved
constituent is a PP, because that adds the PP-attachment ambiguity problem to our
list of worries. I will abstract away from the PP-attachment problem, however,
focussing attention instead on cases of wh-movement of NPs, such as the ones
discussed by Fodor. Carlos Gussenhoven (personal communication) claims to have
found substantial evidence that intonational information goes a long way towards
disambiguating PP-attachment.

“There are in fact sentences quite similar to those in (9) which are globally
ambiguous:

) who do you want to succeed
(ii ) who do you want PRO to succeed
(iii) who do you want t to succeed

What we do not have in (i), however, is a globally ambiguous chain. Cases such
as these are truly problematic for a deterministic parser, as indeed is any globally
ambiguous sentence. How a deterministic parser settles upon one of the possible
readings of an ambiguous sentence is a problem quite distinct from the one
considered here and I will put it aside here.

Y'We must also assume that case is assigned to referential indices only, so as

to avoid visibility of the trace at PF in violation of the Projection Principle. This
seems straightforward.

350



S Apparent cases of multiple doubtful gaps in complex sentences

Baart and Raaijmakers (1988), who seem to be unaware of Fodor’s work on
doubtful gaps, suggest that the Marcus parser could be supplemented with a
last resort strategy for sentences like (17) below, which, they claim, have a
doubtful gap in the matrix clause that can only be disambiguated by inspecting
the parser’s right context:

an @ welke studenten vertelde hij (1) dat hij t vitgenodigd had
which students told he that he invited had
(ii) welke studenten vertelde hij (1) dat hij zich verslapen had
which students told he that he himself overslept had

We will shortly have reasons to reinterpret the data in (17), but for now let us
accept them. Even though Baart & Raaijmakers present no detailed analysis of
a chain algorithm, the idea they have in mind is clear. When the parser
encounters the doubtful gap in the matrix clause, it does not immediately drop
a trace, but instead builds the embedded clause first. Upon detection of a
doubtless gap in the embedded clause, it builds a chain backward. If no such
gap is detected, it drops a trace in the matrix clausc when it has finished the
embedded clause. Baart and Raaijmakers’ proposal could perhaps be made to
work technically and would not constitute an unnatural extension of the parser’s
abilities. But despite its initial attraction, backward chain formation suffers from
problems that are the exact mirror image of the ones it was designed to solve.
Consider the examples below:

(18) @) to whom did Bill say that Frank believed Susan gave a book (1)
(ii) did Bill say that Frank believed Susan gave a book (1)

In (18i) chain formation will be in ‘forward mode’ all the way down to the
variable. Therefore, when the parser encounters the doubtful gap, there is a
local antecedent and no problem arises. But now consider (18ii). There is no
antecedent, so forward chain formation does not take place. However, what
happens when the parser detects the doubtful gap in the embedded clause? The
preblem is that at this point in the parse the Marcus parser has no way of
knowing whether there is an antecedent for the gap it has detected. Therefore,
it cannot resolve the ambiguity and halts, clearly a very undesirable result. In
the Baart & Raaijmakers’ examples no such ambiguity arises, because in all
their examples the gap in the embedded clause happens to be a doubtless gap.

The dilemma for this sort chain algorithm may be summarized as follows.
The deterministic approach to chain formation demands that ambiguities be
resolved on the basis of strictly local information. However, the structure of the
natural language problem is such that this demand cannot be met with a simple
wait-and-see strategy (for it is the postponed creation of traces that gives rise
1o new problems). Note in particular that the ambiguity problem in (18ii) cannot
be solved by increasing the accessibility of the parser’s left context: a doubtful
gap that lacks a local antecedent either has no antecedent at all, as in (18ii), or
its antecedent can be arbitrarily far away:

(19) to whom did you promise (1) 10 1ell Sharon that Carl believed that Sue
said . . . that Bill would talk t

351



The chain algorithm developed in the previous section does not suffer
from the same shoricoming as the Baart & Raaijmakers algorithm. The reason
for this is that it docs not do backward chain formation, but only backward
chain indexing: trace creation is always antecedent-dependent. But the data in
(17) and (18) did not yet provide the worst cases that a parser has 1o deal with.
As I pointed owt carlier, a case of multiple doubtful gaps would do our
algorithm in as well. With cases like (19) under our noses, we do not have to
look very far for the dreaded example:

20) to whom did Bill promise (t) that he would give a book (1)

It would scem that with examples like this one we have a serious problem at
our hands. Fodor (1978) gives a few examples that arc similar to (20), but she
does not seem to notice their very problematic nature:

@21 @ who did Mary promise (1) that she would marry (1)
(ii) to whom did Father say (t) that he was planning 10 write (1)

Fodor writes:

'Many informants have agreed that as one reads through
sentence [(21ii)], one’s first intuition is that the o whom fits
into the doubtful gap in the main clause, giving the analysis
Father said 1o whom that... Then, as one continues through
the sentence, its meaning changes with much the same
subjective effect as a reversible visual figure such as the duck-
rabbit, so that the o whom now fits into the doubtful gap in
the second clause: Father said that he was planning to write
to whom.’

If these intuitive judgements are correct, none of the models Fodor discusses
accounts for them. An assumption that is implicit in Fodor's article is that the
parser cannot postpone or avoid decisions about its input. It is this rigid
behavior that underlies her account of the relative processing complexity of her
cxamples. The parser can be momenuarily 'decoyed’, as she puts it, and then
maust undo some of its previous actions. On this view of things, the parser will
also have to decide whether to assume a gap after promise and say or not.
Assuming the best model Fodor presents, the lexical-expectation model, this
means that, like all all other verbs with doubtful gaps, promise and say must
be associated with a ranking of hypotheses. Hence, the parser either assumes a
gap or it does not assume a gap. Whatever it decides, the non-preferred
altemative reading will exhibit added processing complexity. However, this is
not what we find with these sentences®.

Going back to the data in (20) and (21), it scems rcasonable to argue
that the problem they pose is only apparent and due to a misanalysis of the

“The other option is to account for the judgements in terms of a parser that
builds more than one analysis in parallel. This seems untcnable, however, in the
light of such phenomena as garden paths (see section 3.4 and Marcus op. cit. for
details).

352



facts. Engdahl (1984) and Hudson (1984) analyze cases similar to (19)-(21) as
involving parasitic gaps. Consider (22):

(22) which men, did the police wamn t, [O; that they were about to arrest
el

We could analyze the data above analogously. Here are some examples:

23) &) to whom, did Bill promise ¢ [O; that he would give a book ¢
(ii) who, did Mary promise ¢, [O, that she would mamry e
(iii) to whom, did Father say ¢, [O; that he was planning to write e,]

On this view the gap in the matrix clause would in fact not be a doubtful gap.
The judgements of these data vary from sentence to senicnce and from
individual to individual. The parasitic gap reading appears to be facilitated by
(at least) two factors: the choice of matrix verb and absence of tense in the
embedded clause, but it is the first of these which seems 10 have the greatest
influence. My own judgements are that the Dutch facts completely parallel the
English. Informants almost invariably return a judgement with either a gap in
the matrix sentence and no gap in the embedded sentence or a parasitic gap
reading.

What makes these data particularly striking, is that the embedded clause
does not generally speaking constitute a barrier 10 movement. Therefore, the
parasitic gap is not inside a syntactic island as is usually the case:

24) @) to whom did Bill premise his wife that he would give a book t
(ii) who did Mary promise her father that she would marry t
(iii) to whom did Father say to the linguist that he was planning to
write t

Although the analysis of these sentences remains a matter of some concem, 1
see at present no reason to abandon the assumption that multiple doubtful gaps
do not exist. In fact, the stong prefercnce that many speakers scem o have
for a doubtful gap reading of the sentences in (23) is suggestive. For a detailed
treatment of parasitic gaps in the context of deterministic parsing I refer the
reader to Van de Koot (to appear).

6 Conclusion

I have argued that the doubtful gap problem can be solved strictly
deterministically, on condition that global chain ambiguities do not occur in
natural languages. The proposed chain algorithm obeys Rizzi’s (1988) principle
governing the assignment of referential indices, in that trace indexing is
dependent upon the unambiguous identification of the ©-marked foot of the
chain of which the trace forms a link. The logical separation of trace creation
and trace indexing, together with the assumption that enly elements camrying a
referential index are visible at LF, was shown to account for the data in a
satisfactory way.

It can casily be shown that the chain algorithm has lincar time complexity.
The number of computational steps necded to build and coindex one trace is

353



some constant . The amount of traces and operators the parser builds is linear
in the amount of input words. Hence, the algorithm’s complexity is kn. All in
all, the conclusion is justified that the special structure of the chain formation
problem does not warrant a computationally expensive method like backtracking.

References

Baart J. and S. Raaijmakers (1988). 'Dutch as a Deterministic Language’. In
Coopmans, P. and A. Hulk eds., Linguistics in the Netherlands 1988.
Dordrecht: Foris.

Berwick, R. and A. Weinberg (1984). The Grammatical Basis of Linguistic
Performance. Cambridge, MA: MIT Press.

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT
Press.

Engdahl, E. (1984). ‘Parasitic Gaps, Resumptive Pronouns, and Subject
Extractions’. Ms., University of Wisconsin, Madison.

Fodor, J. (1978). 'Parsing Strategies and Constraints on Transformations'.
Linguistic Inquiry 9, pp.427-473.

Hudson, R. (1984). "Multiple (alias 'Parasitic’) Gaps'. Ms., University College,
London.

Koot, J. van de (1985). Review of The Grammatical Basis of Linguistic
Performance. Second Language Research 1.1., pp.73-82.

Koot, J. van de (1987). "On Explaining Subjacency’. In F. Beukema and P,
Coopmans, eds., Linguistics in the Netherlands 1987, pp.121-129.
Dordrecht: Foris.

Koot, J. van de (1990). Ar Essay on Grammar-Parser Relations. Doctoral
dissertation. University of Utrecht.

Kuroda, S.-Y. (1986). 'Whether We Agree or Not: Rough Idcas about the
Comparative Syntax of English and Japanese’. Ms. University of Califomia
at San Diego.

Marcus, M. (1980). A Theory of Syntactic Recognition for Natural Language.
Cambridge, MA: MIT Press.

Rizzi, L. (1988). 'On the Status of Referential Indices’. Paper presented at the
workshop "The Chomskyan Tum’, Tel-Aviv, Jerusalem.

Wanner, E., R. Kaplan, and S. Shiner (ms.). "Garden Paths in Relative Clauses’,
unpublished paper, Harvard University, Cambridge, Massachuselts.
Wanner, E., and M. Maratsos (ms.). 'An Augmented Transition Network Model
of Relative Clause Comprehension’, unpublished paper, Harvard University,

Cambridge, Massachusetts.

Wanner, E., and S. Shiner (ms.). *Ambiguilies in Relative Clauses’, unpublished

paper, Harvard University, Cambridge, Massachusetts.

354





