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Work on making predictions in particle physics using Quantum Field Theory, and
comparing to experimental data from colliders.

Main concentration on Quantum ChromoDynamics QCD the theory of the strong
interaction.

Quarks (fermions) interact via the exchange of gluons (vector bosons) with the physics
described by the SU(3) gauge theory with Lagrangian

LQCD = −1/4F µν
aFµνa +

nf
∑

f=1

q̄f

(

iγµDµ − mf

)

qf ,

where the covariant derivative is defined by

Dµqf = ∂µqf + igsAµa1/2λaqf

The sum over f is for the different quark flavours, up. down, strange, charm, bottom
and top, each with different masses.
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Can formulate Feynman rules to calculate particle interactions as a perturbation series
in αS = g2

s/(4π)

At first non-classical order obtain corrections to quark-gluon or gluon-gluon coupling
of form

pa

pa − k

pb

pb + k

k
pa + pb

pa

pa − k

pb

pb + k

k
pa + pb

This results in integrals of the form

V ∼

∫

d4k

(2π)4
k k

k2(pb + k)2(pa − k)2
→

∫

d4k

(2π)4
1

k4
∼

∫

dk

(2π)

1

k

when we consider the limit k → ∞ in the loop. Leads to ultraviolet divergence.
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In order to obtain a well-defined result must implement some ultraviolet cutoff Λ0

above which QCD is no longer a reliable theory (e.g. Λ0 is the scale of new physics).

Also introduce a physical renormalization scale µR – choose to be similar to scale of
physics.

Subtract divergences like ln(Λ2
0/µ2

R) and absorb into definition of bare parameters,
leaving behind finite predictions in terms of physical renormalised parameters.

g0
s = gs + g3

sC ln(Λ2
0/µ2

R) σ({p}, g0
s,Λ0) ≡ σ({p}, gs)

Process known as renormalization. Long been proved that it can be applied successfully
to all orders in QCD and rest of the Standard Model.

However, we have introduced artificial renormalization scale µR on which renormalised
couplings, masses, etc depend, though dependence disappears (at all orders in physical
quantities), e.g.

d

d ln µ2
R

(

αS(µ2
R)σ1({p}, µR) + α2

S(µ2
R)σ2({p}, µR)

)

= O(α3
S(µ2

R)).
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By calculating previous diagrams representing coupling find that coupling satisfies
evolution equation

dαS

d lnµ2
R

= −β0α
2
S − β1α

3
S + · · · , β0 =

(11 − 2/3Nf)

4π

Negative β-function means strong at low scales but weaker at higher scales.

Ignoring the O(α3
s) corrections this may be solved

−

∫ µ2
R

µ2
0

d ln µ̃2
R =

1

β0

∫ αs(µ
2
R)

αs(µ2
0)

d α̃s

α̃2
s

,

where µ0 is some fixed scale. Hence,

− ln(µ2
R/µ2

0) =
1

β0

[

1

αs(µ2
0)

−
1

αs(µ2
R)

]

.

This leads to

αs(µ
2
R) =

1

β0
∗

1

ln(µ2
R/µ2

0) + 1
β0αs(µ2

0)

.

From this expression we can indeed see that αs(µ
2
R) decreases as µ2

R increases, and
that αs(µ

2
R) → 0 as µ2

R → ∞. However, the definition relies on an arbitrary boundary
condition for the coupling at some fixed scale µ2

0.
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It is simpler, and more illustrate to rewrite the solution for αs(µ
2
R) slightly. It may be

expressed as

αs(µ
2
R) =

1

β0
∗

1

ln(µ2
R) − (ln(µ2

0) −
1

β0αs(µ2
0)

)
.

Defining a scale ΛQCD by

ln(µ2
0) −

1

β0αs(µ2
0)

= ln(Λ2
QCD),

ΛQCD is the value of µ2
0 for αs(µ

2
0) → ∞. Results in the solution.

αs(µ
2
R) ≈

4π

(11 − 2/3Nf) ln(µ2/Λ2
QCD)

Binds partons into hadrons at low scales, i.e. why QCD is theory of strong force. But
can do perturbative calculations at higher scales, i.e. scales µ2

R À Λ2
QCD.

In practice ΛQCD ∼ 0.3GeV, mass scale of hadrons.

Perturbation theory for a few GeV and above.
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e e

γ? Q2 = −q2

P

k
X’

coefficient function

CP
i (Q2, x, αS)

parton distribution

fi(x,Q2, P, k, pX′, αS)

But hadrons are bound together
by the strong force, described by
nonperturbative physics.

Most important particle colliders
use hadrons – HERA was an ep
collider, the Tevatron is a pp̄
collider, the LHC (large hadron
collider) at CERN is a pp collider.

Consider scattering of electrons of
protons, which then fragment

Q2 = −q2 – Scale of scattering

x = Q2

2P ·q

Factorization Theorem – separates
processes into nonperturbative
parton distributions and coefficient
functions for the particular
process.
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Consider LO DIS as in figure.

On-shell parton δ((k + q)2).

In light-cone kinematics and for Q2 large
→ δ(k/P − x), i.e. x is fractional
momentum of proton carried by parton.

Leads to parton density.

qf(x) = 1
2P

∫

d4k δ

(

k
P
−x

)

tr
(

γΓf(P, k)
)

Γf(P, k)βα =
∑

X′ δ4(P−k−pX′) 〈P |q̄fα|X
′〉 〈X ′|qfβ|P 〉,

where qf(x) represents the probability to find a quark of falvour f carrying a fraction
x of the momentum of the hadron.

Corrections to above of size Λ2
QCD/Q2.
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Beyond LO contributions from extra
partons in final state.

However, emission of soft or collinear

final state massless partons (gluon,
mu, md, ms ¿ ΛQCD) lead to
infrared divergences.

Regularised in perturbative coefficient
functions by factorisation scale µF .

Terms of form Pij(y) ln(µ2
F/m2

q)
absorbed into parton distributions,

σ(ep → eX) =
∑

i=qf ,q̄f ,g

∫ 1

x

dy

y
Ci

(x

y
,
Q2

µ2
F

;αS

)

fi(y, µ2
F )

The partons are intrinsically nonperturbative. However, once µ2
F is large enough they

do evolve with in a perturbative manner.

dfi(x, µ2
F , αS)

d ln µ2
F

=
∑

j

Pij(x, αS) ⊗ fj(x, µ2
F , αS)

where the splitting functions Pij(x, αS) describing how a parton splits into more
partons are calculable order by order in perturbation theory.
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P

P

fi(xi, µ
2
F , αS)

CP
ij(xi, xj, αS)

fj(xj, µ
2
F , αS)

The coefficient functions
CP

i (x, αS, Q2/µ2
F ) are process

dependent (new physics) but
are calculable as a power-series
in αS(µ2

R).

CP
i (x, αS(µ2

R)) =
∑

k

CP,k
i (x)αk

S(µ2
R).

Since the parton distributions
fi(x, µ2

F , αS) are process-
independent, i.e. universal,
once they have been measured
at one experiment, one can
evolve and predict many other
scattering processes.
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Leading member of MSTW (previously MRST) group. Use all available data –
more than 30 different types of data set, and most up-to-date QCD calculations to
determine parton distributions and their consequences. A large-scale, ongoing project.
Vital input for hadron collider physics – used by experiments and theorists worldwide.
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Heavy Quarks

charm ∼ 1.5GeV, bottom ∼ 4.3GeV, top ∼ 175GeV. Two distinct regimes:

Near threshold Q2 ∼ M2
H massive quarks not partons. Created in final state. However,

ln(Q2/m2
H) divergences.

High scales Q2 À M2
H massless partons. Behave like up, down, strange. Sum

ln(Q2/M2
H) terms via evolution.

F (x, Q2) = CFF
k (Q2/m2

H) ⊗ f
nf

k (Q2)

= CV F
j (Q2/m2

H) ⊗ f
nf+1

k (Q2),

= CV F
j (Q2/m2

H) ⊗ Ajk(Q
2/m2

H) ⊗ f
nf

k (Q2),

Perturbative matrix elements Ajk(Q
2/m2

H) containing ln(Q2/m2
H) terms relate

f
nf

k (Q2) and f
nf+1

k (Q2) → correct evolution for both.

CV F
j (Q2/m2

H) only uniquely defined in massless limit Q2/m2
H → ∞.

Have developed a theoretically correct method, Thorne-Roberts variable flavour
number scheme (TR-VFNS) by imposition of physically motivated constraints →
precise definition of parton distributions and scattering at all scales.
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Extrapolation between the two simple
kinematic regimes for xF3 measured
using neutrino scattering at NuTeV.

Widely used for structure functions.

In principle defined for p p → X + FQ

and other processes. In practice details
require further work.

Can also be extended for more exclusive
final states (not described too well for
charm at HERA).

Important to test c-quarks and b-quarks
at Tevatron, HERA and LHC.
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Small x
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Small x parton distributions,
corresponding to very high-energy
scattering, are interesting within
QCD.

Also vital for understanding the
standard production processes at the
LHC, and perhaps some of the more
exotic ones.
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Small x Theory

It is known that at each order in αS each splitting function and coefficient function
obtains an extra power of ln(1/x) (some accidental zeros in Pgg), i.e.

Pij(x, αs(Q
2)), CP

i (x, αs(Q
2)) ∼ αm

s (Q2) lnm−1(1/x).

→ no guarantee of convergence at small x!

x < 0.01, ln(1/x) > 5, → αS ln(1/x) > 1.

The global fits usually assume that this turns out to be unimportant in practice, and
proceed regardless.

Fits work fairly well at small x, but could be better.

Some predictions unstable from LO → NLO → NNLO.
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Try alternative perturbative organisation – resummation of leading ln(1/x) terms and
running coupling effects (resummation of β0 terms). Obtained by solving running-
coupling BFKL equation for unintegrated gluon f(k2).

f(k2, x) = fI(Q
2
0) +

∫ 1

x

dx′

x′
ᾱS(k2)

∫

∞

0

dq2

q2
K0(q

2, k2)f(q2, x)

Solve using double Mellin transformation w.r.t. Q2 and ln(1/x). Obtain factorised
solution for gluon (N conjugate to ln(1/x)).

G(Q2, Q2
0, N) = GE(Q2, N)GI(Q

2
0, N) + O(Q2

0/Q2)

GI(Q
2
0, N) input at low scale Q0 ∼ ΛQCD. Contaminated by infrared physics.

GE(Q2, N) completely controls evolution with Q2. Calculable so it is possible to
obtain splitting functions unambiguously.

Results in splitting functions of the form

xPgg(x,Q2) =

∞
∑

n=1

n−1
∑

m=0

anmαn
S(Q2) lnn−1−m(1/x)βm

0 .

The series is asymptotic but well defined (∼ (−1)nn!).
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Leads to better fit than NLO-
in-αS, particularly in terms of
dF2(x,Q2)/d ln Q2.

Improvement of fit to small
x HERA data (within global
fit), due to ln(1/x) and β0

double resummation compared
to standard NLO in αS.

Difference when evolved to
LHC region.
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Example of need to understand both heavy flavours and small x physics for LHC.

Consider bottom production along with a Higgs boson.

b

bg

h b

bg

h

In Standard Model tiny since Higgs-bottom coupling gbb̄h = mb/v, (v Higgs vacuum
expectation value.) mb = 4.5GeV, v = 246GeV.

In Minimal Supersymmetric Standard Model two Higgs doublets coupling separately
to d-type and u-type quarks. Expectation values vd and vu.

Ratio tan β = vu/vd.

Enhancement of Higgs-bottom coupling

gbb̄h ∝
gSM

bb̄h

cosβ
.

Bounds from LEP, tan β large → cos β small. Enhancement of Higgs-bottom coupling.
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Production of supersymmetric Higgs depends on parton uncertainties, heavy flavour
procedure and high-energy (small-x) physics.
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Summary.

Phenomenology relevant for the Extremely recent (HERA), existing (Tevatron) and
existing/upcoming (LHC) hadron colliders (and others).

Main emphasis on QCD-related issues at present, with full understanding of initial
state structure with implications for final state physics.

Concentration on theory of heavy flavours and small x physics. Intend to look more
at Electroweak final states and effects.

Necessary for understanding of any of the physics – Standard Model or exotic – at
these colliders.
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