Services

Get updates from UCL News

UCL Facebook pageUCL Twitter feedGoogle Plus iconFlickr iconUCL SoundCloud pageUCL Youtube channel

Hunt for extraterrestrial life gets massive methane boost

17 June 2014

A powerful new model to detect life on planets outside of our solar system, more accurately than ever before, has been developed by UCL researchers.

Extrasolar planet HD189733b rises from behind its star. Is there methane on this planet? (Credit: ESA)

The new model focuses on methane, the simplest organic molecule, widely acknowledged to be a sign of potential life. 

Researchers from UCL and the University of New South Wales have developed a new spectrum for ‘hot’ methane which can be used to detect the molecule at temperatures above that of Earth, up to 1,500K/1220°C – something which was not possible before.

To find out what remote planets orbiting other stars are made of, astronomers analyse the way in which their atmospheres absorb starlight of different colours and compare it to a model, or ‘spectrum’, to identify different molecules.

Professor Jonathan Tennyson, (UCL Department of Physics and Astronomy) co-author of the study said: “Current models of methane are incomplete, leading to a severe underestimation of methane levels on planets.We anticipate our new model will have a big impact on the future study of planets and ‘cool’ stars external to our solar system, potentially helping scientists identify signs of extraterrestrial life.”

We anticipate our new model will have a big impact on the future study of planets and ‘cool’ stars external to our solar system, potentially helping scientists identify signs of extraterrestrial life.

Professor Jonathan Tennyson

Lead author of the study, Dr Sergei Yurchenko, (UCL Department of Physics and Astronomy) added: “The comprehensive spectrum we have created has only been possible with the astonishing power of modern supercomputers which are needed for the billions of lines required for the modelling. We limited the temperature threshold to 1,500K to fit the capacity available, so more research could be done to expand the model to higher temperatures still. Our calculations required about 3 million CPU (central processing unit) hours alone; processing power only accessible to us through the DiRAC project.

“We are thrilled to have used this technology to significantly advance beyond previous models available for researchers studying potential life on astronomical objects, and we are eager to see what our new spectrum helps them discover.” he added.

The new model has been tested and verified by successfully reproducing in detail the way in which the methane in failed stars, called brown dwarfs, absorbs light.

Links

Image

  • Extrasolar planet HD189733b rises from behind its star. Is there methane on this planet? (Credit: ESA)

Media contact

Bex Caygill

Tel: +44 (0)20 3108 3846

Email: r.caygill [at] ucl.ac.uk