Space Plasma Research at UCL/MSSL

We are active in a number of areas of Space Plasmas Research, driven by our current and future participation in international space science missions for which we have, or will provide instrument hardware.  These include interests in the solar wind, and the terrestrial and planetary magnetospheres.  

Illustration of the proposed model for the polar hole origin of the fast solar wind by Tu & Marsch (2005)

The solar wind is a stream of plasma that flows radially outwards from the Sun, carrying with it the solar magnetic field. It is a supersonic plasma that is shocked by its encounters with bodies throughout the solar system. The source of the solar wind and its evolution through the solar system are areas of active research within the Space Plasma Physics group at MSSL.

We are the principal investigator institute for the Solar Wind Analyser (SWA) suite of sensors which are selected for inclusion on ESA’s Solar Orbiter Mission.  This mission, targeted for launch in January 2017, is a candidate to be the first component of ESA’s Cosmic Vision 2015-2025 Programme.  As well as leading the international SWA consortium, preparations for this mission at UCL/MSSL include the scientific analysis of current space-based observations of the solar wind, which acts to inform the design and prototyping work for the SWA Electron Analyser System (SWA/EAS), which will be built at UCL/MSSL.

We work in close collaboration with the UCL/MSSL Solar Physics group in order to better our understanding between phenomena on the Sun and their propagation into the solar system.

Artist's impression of plasma regions of the magnetosphere

We are engaged in the scientific study of the structures and dynamics of a number of regions found within and around the Earths magnetosphere, including the magnetospheric cusps, the magnetopause and the magnetotail. We are particularly interested in magnetic reconnection, and its manifestations at the magnetopause (for example through studies of Flux Transfer Events) and in the magnetotail (in particular the physics of magnetospheric substorm and related phenomena). In addition, recent work concentrates also on the auroral regions, and the physical processes which accelerate particles precipitating from the magnetosphere to the energies needed for auroral activation.

The principal tool we use for magnetospheric research is data from the ESA 4-spacecraft Cluster mission and China/ESA 2-spacecraft Double Star mission. UCL/MSSL is the Principal Investigator Institute for the Electron Spectrometer instrument (PEACE) flown on all 6 of these spacecraft.  We also use data from the Polar, Interball, Geotail, ACE, Wind and THEMIS satellites.  

Artist impression of Jupiter and its moons. Image courtesy John Spencer

Often in close collaboration with members of the UCL/MSSL Planetary Group, members of the Space Plasmas Group regularly participate in studies of the plasma environments (magnetospheres, ionospheres, plasma wakes, etc.) of other solar system bodies.

Our expertise in studying the plasma environment around the Earth and the abundance of data available allow us to study the similarities and differences between the different planetary systems throughout the solar system. Through these comparisons, we can further our understanding of the fundamental physics of plasmas. 

MSSL Space Plasma Science Nuggets

The Aurora Australis seen from the International Space Station (ISS-029). Courtesy: NASA

Structure and variability of the auroral acceleration region

Bright auroral arc appear when charged particles from the magnetosphere are accelerated into the upper atmosphere. Collisions between charged particles and neutrals excite the electrons in the neutral particles which then de-excite by emitting auroral light. Particles, in particular electrons, are accelerated out of the magnetosphere and into the atmosphere by magnetic-field-aligned electric potential drops in a region known as the auroral acceleration region (AAR). In a recent paper, Forsyth et al. [2012] investigated the temporal variability and spatial structure in one such region. More...

Artist impression of the Earth's bow shock. (c) UCL

What is the source of magnetotail flux-ropes?

Travelling compression regions (TCRs) are perturbations in the magnetotail lobe magnetic field caused by structures moving Earthward or tailward within the plasma sheet. Previous works have suggested that these structures are created by either time-dependant reconnection occurring at a single X-line, forming a flux-bulge-type structure, or space-variant reconnection at multiple X-lines, forming flux-rope-type structures. By analysing a TCR and its source structure using the Cluster spacecraft, Beyene et al. (2011) have endeavoured to determine which of these mechanisms creates TCRs. More...

Artists impression of the plasma regions of the magnetosphere. (c) UCL 2011

Particle Distributions in the Magnetotail

For the first time, Walsh et al. have examined, in detail, the particle distributions in the magnetotail to determine the average pitch angle distributions.  More...

Artist's impression of the Cluster quartet. (c) ESA

Calculating currents from four spacecraft

Ampere's law tells us that the curl of a magnetic field is proportional to current density. In order to measure the curl of a magnetic field in space, one needs to know approximate the variation of the magnetic field between four non-coplanar points. Such measurements are achieved by the Cluster quartet. More...

A 3D cut showing regions of the magnetosphere. FTE formation occurs on or near the subsolar magnetopause (yellow circle).

Discovery of the 'Travelling Magnetopause Erosion Region'

Recent work by Owen et al. has shed new light on the structure of the magnetopause following bursts of reconnection through the discovery of 'Travelling Magnetopause Erosion Regions'. More...

Page last modified on 08 sep 11 09:26