MSSL Space Plasma Science Nuggets

What effect do substorms have on the radiation belts?

Publication date:

Artists impression of particles in Earth's Van Allen belts. Courtesy NASA SVS

The Van Allen radiation belts are a torus of high-energy charged particles trapped on magnetic field lines at the Earth. Consisting mainly of near-relativistic electrons, these belts stretch out from a few thousand kilometres altitude to around geosynchronous orbit and pose a very real hazard to satellites flying through or inhabiting this space. One of the mysteries of the radiation belts is how they get there - most of the plasma in the magnetosphere or coming off the Sun is at much lower energies. One theory is that dynamic events in the magnetosphere known as substorms, that also result in bright auroral displays, might energise particles in the magnetosphere or provide a mechanism by which particles might be accelerated to these exceptionally high energies.

ULF Waves above the Nightside Auroral Oval during Substorm Onset

Publication date:

(eft panels) false colour images, and (right) 3 second difference images from the FSMI and GILL ASIs for the three consecutive auroral bead onsets from (a) ~0503 UT, (b) ~0510 UT, and (c) ~0524 UT.

The first indication of substorm onset is a sudden brightening of one of the quiet arcs lying in the midnight sector of the oval, and an explosive auroral displays covering the entire night sky follows.  In space, this corresponds to a detonation that releases a huge amount of energy stored in the stretched night-time magnetic fields and charged particles. This chapter reviews historical ground-based observations of electromagnetic waves and their role in detonating the substorm, and highlights new research linking these electromagnetic waves explicitly to substorm onset itself. The chapter focuses on the properties of ultra-low frequency (ULF) electromagnetic waves that are seen in two-dimensional images of the aurora and discusses a wider range of physical processes that could be responsible for the azimuthally structured auroral forms along the substorm onset arc immediately before it explosively brightens.  

Student Sounding Rockets to train the next generation of space scientists

Publication date:

Launch of the first CaNoRock. Image courtesy: Kolbjorn Blix Dahle

The Canada-Norway Student Sounding Rocket (CaNoRock) program is a multi-national, multi-university collaboration to train undergraduate students in space science or engineering, and to recruit them into space-related graduate studies or industry.

A New Technique for Determining Substorm Onsets and Phases from Indices of the Electrojet (SOPHIE)

Publication date:

An auroral substorm observed by the IMAGE FUV-WIC instrument. Courtesy: H. U. Frey/IMAGE/NASA

Substorms are a fundamental mode of variability of the solar wind-magnetosphere-ionosphere system. Previous studies have shown that they can process over 1000 TJ of captured solar wind energy and, in so doing, divert magnetospheric currents through the ionoshpere. This diversion of currents results in a distinct signature in ground-based magnetometer measurements at auroral latitudes. In a new paper, Forsyth et al [2015] have developed a technique for identifying all parts of a substorm from this ground-magnetometer data.

Lightning as a Space Weather Hazard

Publication date:

Average UK thunder days (RTH;top) and lightning rates (RL; second). RL is shown in the remaining panels split by A to T or T to A current sheet crossings on 80 and 10 day intervals.

UK lightning rates previously have been shown to be influenced by large compressed regions of solar wind known as corotating interaction regions (CIRs). CIRs are often co-located with the heliospheric current sheet (HCS) at 1AU. A catalogue of all HCS crossings from 2000 to 2007 is computed using the change in the magnetic field direction. The average lightning rates (RL; from the UK MetOffice’s radio network) and average thunder days (RTH; from audio records) were then computed for 40 days either side of the HCS crossing. These results are shown in the top two rows of the figure. 13.5-and 27-day peaks in thunderstorm activity is observed corresponding to the regularity of HCS crossings of the Earth as they rotate around with the Sun.

A physical explanation for the magnetic decrease ahead of dipolarization fronts

Publication date:

Bursty Bulk Flows (BBFs) are intervals of fast Earthward plasma and magnetic flux transport in the plasma sheet, and are usually considered as the most important carriers of mass and energy towards the near-Earth region. A BBF consists of one or more individual flow bursts (FBs) [Angelopoulos et al., 1992]. Both the plasma velocity and the north-south component of the magnetotail’s magnetic field inside the BBF are significantly larger than in the surrounding region. They carry a stronger magnetic field and current density on their leading edge than in the surrounding magnetotail. The front of the BBF is often associated with a sharp increase in the northward magnetic field component B_z and is thus known as the dipolarization front (DF) [Nakamura et al., 2002; Sergeev et al., 2009]. This is usually a kinetic-scale structure of width of the order of an ion gyro-radius, i.e. ~1000km.

Statistical characterisation of the growth and spatial scales of the substorm onset arc

Publication date:

During southward IMF reconnection on the dayside leads to a build up of magnetic energy in the tail. As flux is piled into the tail the configuration becomes unstable leading to an explosive release in magnetic energy, termed a substorm. The rearrangement of the magnetic field is accompanied by highly dynamic substorm aurora. 

Influence of solar wind variability on magnetospheric plasma waves

Publication date:

ULF wave power spectral density as a function of solar wind variability

Solar wind impacts the Earth’s magnetic cavity driving various waves and instabilities inside the magnetosphere. The waves in the range of few mHz (ultra low frequency range, ULF) are particularly important for the dynamics of radiation belts, the populations of energetic particles trapped inside the Earth’s magnetosphere. The physical mechanisms behind driving ULF wave power are not fully understood but they are known be strongly dependent on the upstream solar wind conditions. The time-average solar wind parameters, such as average solar wind speed and density, are typically used to characterise the upstream solar wind conditions. In this work, the alternative approach is taken and the solar wind conditions are characterised by the dynamic variability of solar wind parameters, statistically quantified by their standard deviations. For the statistical study, the nine-year dataset of GOES satellite observations at the geostationary orbit is processed to characterise the magnetospheric ULF wave power, while the variability of solar wind is characterised using solar wind data from the Lagrangian L1 point. It is demonstrated that the magnetospheric wave power in ULF frequency range is the most sensitive to the variability of interplanetary magnetic field vector rather than variabilities of other solar wind parameters (plasma density, solar wind speed and temperature). The work results from collaboration between MSSL, NASA Goddard Space Flight Center and the University of Alberta.

Transpolar arc observation after solar wind entry into the high latitude magnetosphere

Publication date:

Aurora picture from TIMED/GUVI, and the footpoints of Cluster and DMSP

During periods of northward Interplanetary Magnetic Field (IMF), geomagnetic activity is generally quiet, but solar wind plasma can penetrate and be stored in the magnetosphere. Recently, a new region of solar wind plasma entry into the terrestrial magnetosphere, in the lobes tailward of the cusp was reported and high latitude magnetic reconnection was suggested to be the most probable mechanism of the entry [Shi et al., 2013]. Higher energy ions have been found by Fear et al. [2014] and interpreted as due to magnetotail reconnection during periods of northward IMF. Since these events are rare, the fate of the entered plasma has not been widely studied. It is not known whether those plasmas entry will contribute to aurora. In this study, with very unique conjugate observations of aurora and high latitude in-situ observations, we investigate a possible link between solar wind entry and the formation of transpolar arcs in the polar cap.

The magnetospheric substorm at Mercury

Publication date:

The evolution of Mercury’s magnetosphere during the substorm.

Magnetospheric substorms are space weather disturbances powered by the rapid release of magnetic energy stored in the lobes of planetary magnetic tails. Despite the comprehensive observations of substorm at Earth, there are rare detail observations of substorm processes at Mercury.

Search UCL News