A A A

Space Plasma Physics

Artist's impression of the Cluster quartet. (c) ESA
Artist's impression of the Cluster quartet. (c) ESA

The Space Plasma Physics group at MSSL is a leading, internationally recognised research group studying the physical interaction between the Earth and the Sun and the fundamental physics of space plasmas. The group has a history of producing instrumentation for, and analysing data from, international space exploration missions in collaboration with scientists around the world.

The group is heavily involved in the current Cluster mission and the proposed Solar Orbiter mission. Much of our research involves exploiting data from the Cluster mission, in conjunction with other missions and facilities. We also provide operational support and data processing for the Cluster and Double Star missions and the Cluster Active Archive. We have a number of PhD opportunities for students to study some of the many aspects of space plasmas.

Details of our mission involvement, research and upcoming projects can all be found on this site.

MSSL Space Plasma News

Dr. Colin Forsyth at RSGB Convention 2014

Dr. Colin Forsyth was invited to talk at the Radio Society of Great Britain's annual convention, held at Kents Hill Conference Centre in Milton Keynes. His talk, entitled HF Propagation Alphabet Soup covered the science behind standard global space weather indices and how these can be interpreted for high frequency radio wave propagation. More...

Cluster-MAARBLE-Van Allen Probes Workshop 2014

Prof. Andrew Fazakerley, Drs. Colin Forsyth and Dimitry Pokhotelov and students Kirthika Mohan and Ali Varsani all attended the 24th Cluster Workshop, entitled "Geospace Revisited" and held in conjunction with the Van Allen Probes and MAARBLE communities. The workshop took place at the Rodos Palace hotel on the greek island of Rhodes. More...

Solar Orbiter SWA Critical Design Review completes in ESTEC

Together with consortium colleagues from France, Italy and the USA, members of MSSL's PI team for the Solar Orbiter SWA investigation returned to ESTEC in the Netherlands for the 2-day co-location meeting for the Critical Design Review (CDR) of the SWA instrument suite. 
More...

MSSL Space Plasma Science Nuggets

Figure 1.  Auroral observations during a  substorm. (a) and (b) North-south slice through the aurora from two auroral cameras close-by in white-light, and (c) and (d) in red-line and blue-line auroral emission, respectively.   (e)-(h) shows east-west slices through the auroral cameras, showing the formation and evolution of wave-like auroral beads at the start of this substorm.

Inner magnetospheric onset preceding reconnection and tail dynamics during substorms: Can substorms initiate in two different regions?

The explosive release of energy within a substorm marks the beginning of one of the most dynamic and vibrant auroral displays seen in the night-time skies.  Stored magnetic energy is quickly converted to plasma kinetic energy, resulting in dramatic changes both in the large-scale magnetic topology of the Earth’s night-side magnetic field, and in energetic particles being accelerated towards Earth. More...

Ionospheric waves observed by EISCAT radar in Tromso, Norway

Waves in the ionosphere detected by ground GPS receiver network

Ground networks of GPS receivers can be used to characterise ionospheric perturbations. As the dual frequency navigational GPS signal propagates through the ionosphere, due to dispersive properties of the ionised media it carries information about the total ionospheric electron content (TEC). With careful analysis, ionospheric perturbations due to various natural drivers can be detected. Ground networks of GPS receivers in Japan have been used to detect small ionospheric effects from propagating extra long ocean waves, those causing catastrophic tsunamis as they reach the shore. In Scandinavia and Canada, the effects from auroral activity and from magnetospheric plasma waves have been observed in GPS TEC measurements. Such effects can be of crucial importance for the precise GPS positioning but can be also utilised to monitor the Earth’s magnetosphere and in particular the radiation belts. More...

Schematic showing the layers of an FTE. From Varsani et al. (2014)

High-time-resolution observations of an FTE using Cluster

We have presented the Cluster observations of a crater FTE on 12 February 2007, when the quartet was located in the low-latitude boundary layer, and widely separated on the magnetopause plane. The passage of the structure was sequentially observed by Cluster 2, 3, 4 and 1 respectively, analysed in detail. But what are flux transfer events, and why are they important within the magnetosphere? More...

Azimuthal electric field PSD values derived from ground-based magnetometer measurements of the D-component magnetic field PSD at L = 7.94, 6.51, 5.40, 4.26, 4.21, 2.98, and 2.55. The dashed lines represent constant fits to these PSD values. From Ozeke et al. (2014)

New and improved analytic expressions for ULF wave radiation belt radial diffusion coefficients

Ozeke et al. [2014] presented analytic expressions for ULF wave-derived radiation belt radial diffusion coefficients, as a function of L and Kp, which can easily be incorporated into global radiation belt transport models. The diffusion coefficients are derived from statistical representations of ULF wave power, electric field power mapped from ground magnetometer data, and compressional magnetic field power from in situ measurements.
More...

Currents measured by the Cluster spacecraft as they passed over a statistical auroral oval. The currents inside the statistical oval are associated with the substorm current wedge.

Detailed azimuthal structure of the substorm current wedge

During the most dynamic auroral displays, known as substorm, electrical current is diverted from the magnetosphere through the ionosphere. The passage of this current through the upper atmosphere causes the gas to glow giving us the aurora. Since the 1970s it has been thought that this diverted current forms a "substorm current wedge" with upwards current on the duskward side and downward current on the dawnward side. More...

Page last modified on 16 aug 11 12:20