###### Mathematics

- Home
- Prospective Students
- Outreach
- Current Undergraduates
- Current Graduate Students
- Courses & Modules
- Research
- Events
- Seminars
**Applied Mathematics Seminars**- Previous Applied Seminars
- Applied Mathematics Seminars Autumn 2015
- Applied Mathematics Seminars Summer 2015
- Applied Mathematics Seminars Spring 2015
- Applied Mathematics Seminars Autumn 2014
- Applied Mathematics Seminars Summer 2014
- Applied Mathematics Seminars Spring 2014
- Applied Mathematics Seminars Autumn 2013
- Applied Mathematics Seminars Spring 2013
- Applied Mathematics Seminars Autumn 2012
- Applied Mathematics Seminars Summer 2012
- Applied Mathematics Seminars Spring 2012
- Applied Mathematics Seminars Autumn 2011
- Applied Mathematics Seminars Spring 2011
- Applied Mathematics Seminars Autumn 2010
- Applied Mathematics Seminars Spring 2010
- Applied Mathematics Seminars Autumn 2009
- Applied Mathematics Seminars Spring 2009
- Applied Mathematics Seminars Autumn 2008
- Applied Mathematics Seminars Spring 2008
- Applied Mathematics Seminars Autumn 2007

- Departmental Colloquia
- Discrete Geometry and Combinatorics Seminar
- Pure Mathematics Seminars
- Postgraduate Seminars

- Alumnus Activity
- Inaugural Lectures
- Other Events

- Seminars
- Staff
- Department & Sub-Divisions
- Find Us
- Vacancies
- Women In Mathematics
- Athena SWAN
- Staff Intranet

## Applied Mathematics Seminars

### Spring 2016

All seminars (unless otherwise stated) will take place on **Tuesdays at
3.00pm in ****Room 505 in the Mathematics Department **(25 Gordon Street). See see how to find us for further details. There will be tea afterwards in Mathematics Room 606. If
you require any more information on the Applied seminars please
contact Prof Slava Kurylev e-mail: y.kurylev AT ucl.ac.uk or
tel:
020-7679-7896.

### Special Applied Seminar, Monday 11 January 2016 in Room G10, 1-19 Torrington Place

#### José da Silva (Porto University, Portugal)

###### Title: SAR imaging of Wave Tails: recognition of second mode internal wave patterns and some mechanisms of their formation

**Abstract:**

Please click here for José da Silva's abstract

### 12 January 2016

#### Sarah Harris (Leeds University)

###### Title: Modelling Biomacromolecules with Supercomputers: From atomistic length-scales up to the continuum limit

**Abstract:**

Computational
models have huge potential to provide insight into molecular biology by
providing detailed animations of biomolecules and their interactions. In
principle, these simulations act as a “computational microscope”, so long as
the results that are obtained can be validated against experimental data.
Molecular simulation can show how the shapes of biomolecules change due to
their thermal motion, how the structure of individual biomolecules is affected
by subjecting them to mechanical stress and the possible biological
consequences conformational diversity. However, the computational expense of
the calculations, which require high performance supercomputer facilities,
places serious limitations on the length and time-scales that can be accessed.
I shall describe the successes and the challenges of simulations of biomacromolecules at the atomistic level using examples from our own research
and present a new algorithm we are developing that uses continuum mechanics to
model biomolecular complexes that are far too large to be simulated at the
atomistic level. I will conclude by commenting on future prospects for computer
simulation in molecular biology.

### 19 January 2016

#### Eugene Benilov (Univ. of Limerick, Ireland)

###### Title: A new model for gas-liquid phase transitions

**Abstract:**

We examine a rarefied gas with
inter-molecular attraction. It is argued that the attraction force amplifies
random density fluctuations by pulling molecules from lower-density
regions into high-density regions and, thus, may give rise to an instability.
To describe this effect, we use a kinetic equation where the attraction force is taken into account similarly to how electromagnetic forces in plasma
are treated in the Vlasov model. It is demonstrated that the
instability occurs when the temperature drops below a certain threshold value
depending on the gas density. It is further shown that, even if the temperature
is only marginally lower than the threshold, the instability generates
‘clusters’ with density much higher than that of the gas.

These results suggest that the instability found should be interpreted as gas-liquid phase transition, with the temperature threshold being the temperature of saturated vapour and the high-density clusters representing liquid droplets.

### 26 January 2016

#### Andreas Dedner (Warwick University)

###### Title: Discontinuous Galerkin methods for surface PDEs

**Abstract:**

The Discontinuous Galerkin (DG) method has been
used to solve a wide
range of partial differential equations. Especially for advection
dominated problems it has proven very reliable and accurate. But even
for elliptic problems it has advantages over continuous finite element
methods, especially when parallelization and local adaptivity are
considered.

After introducing the notation and analysis for DG methods in Euclidean spaces, we will extend the DG method to general surfaces. The surface finite-element method with continuous ansatz functions was analysed some time ago; we extend this results to a wide range of DG methods for stationary advection-diffusion problems. The non-smooth approximation of the surface introduces some additional challenges not observed when using continuous ansatz spaces. Both a-prioir and a-posteriori analysis of the DG is presented together with numerical experiments.

### 2 February 2016

#### David Sylvester (Manchester University)

###### Title: Adaptive algorithms for PDEs with random data

**Abstract:**

An efficient adaptive algorithm for computing stochastic Galerkin
finite element approximations of elliptic PDE problems with random data will be outlined in
this talk. The underlying differential operator will be assumed to have affine dependence
on a large, possibly infinite, number of random parameters. Stochastic Galerkin approximations are sought in a tensor-product space comprising a standard $h-$ finite element space associated with the physical domain, together with a set
of multivariate polynomials characterising a $p-$ finite-dimensional
manifold of the (stochastic) parameter space.

Our adaptive strategy is based on computing distinct error estimators associated with the two sources of discretisation error. These estimators, at the same time, will be shown to provide effective estimates of the error reduction for enhanced approximations. Our algorithm adaptively `builds' a polynomial space over a low-dimensional manifold of the infinitely-dimensional parameter space by reducing the energy of the combined discretisation error in an optimal manner. Convergence of the adaptive algorithm will be demonstrated numerically.

### 9 February 2016 -Colloquium Talk

#### Prof Malwina Luczak (Queen Mary, University of London)

###### - please see the Departmental Colloquia webpage

### 16 February 2016

#### READING WEEK - NO SEMINAR

### 23 February 2016

#### Speaker: TBC

###### Title: TBC

**Abstract:**

TBC

### 1 March 2016

#### Gareth Parry (Nottingham University)

###### Title: Discrete structures in continuum descriptions of defective crystals

**Abstract:**

I discuss various mathematical constructions that combine
together to provide a natural setting for discrete and continuum geometric models of defective crystals. In particular I provide a quite general list of 'plastic strain variables', which quantifies inelastic behaviour, and exhibit rigorous connections between discrete and continuous mathematical structures associated with crystalline materials that have a correspondingly general constitutive specification.

### 8 March 2016

#### Franco Farini (Instituto Balseiro, Argentina)

###### Title: Some regular aspects of Born-Infeld gravity

**Abstract:**

In this talk, I will review some of the
regularity properties of
a new deformed scheme for the description of the gravitational field known
as Born-Infeld determinantal gravity. Apart from the early success
achieved within this framework concerning the regularization of the Big
Bang singularity in FRW-like cosmological scenarios, I will discuss more
subtle regularization mechanisms emerging from this theory. In particular,
and going over through a number of specific examples, I will focus on how geodesic completeness emerges out sometimes within this context. Finally,
I will comment on some lines of current research and a few open problems I
would like to share with the audience.

### Special Applied Seminar, Friday 11 March 2016 in Room 500 at 4pm

#### Wooyoung Choi (New Jersey Institute of Technology)

###### Title: Predicting highly nonlinear ocean waves with breaking - is it possible?

**Abstract:**The accurate prediction of
nonlinear ocean waves is a challenging task due to complicated nonlinear
interactions among waves of different spatial scales ranging from centimeters
up to kilometers. Another source of difficulty lies in a lack of our
understanding of various physical processes in the ocean including wave
breaking and wind forcing. In this talk, our recent efforts to develop
theoretical models to describe the evolution of nonlinear ocean waves will be described.
Validation of the models with laboratory experiments will be presented and some
remaining challenges will be discussed.

### 15 March 2016

#### Ivan Graham (Bath University)

###### Title: TBC

**Abstract:**

TBC

### 22 March 2016

#### Speaker: TBC

###### Title: TBC

**Abstract:**

TBC

Page last modified on 04 feb 16 11:27