The Skill of Knowing how Reliable your Knowledge is

CONFIDENCE-BASED MARKING (CBM)

... in formative & summative assessment

- What it is
- How it relates to knowledge and learning
- What you can expect if you use it
 ... Experience from UCL & Imperial
- How you can set about it
- Issues of fairness, good practice, reliability, validity
- Evaluation & dissemination - discussion

www.ucl.ac.uk/lapt

Confidence-Based Marking (CBM)

Knowledge is not just about getting it right
- you must know when you are getting it right
- and you must indicate if you aren’t sure

These are life skills – relevant in every discipline

LEARNING-ORIENTED ASSESSMENT must develop self-monitoring of the quality of work (Sadler, Knight)

- The simplest, most fundamental self-monitoring relates to right/wrong answers
- A student who can discriminate between reliable and unreliable answers deserves more credit than one who cannot, even if they get the same number of answers correct.

Confidence-Based Marking (CBM)

LEARNING-ORIENTED ASSESSMENT must develop self-monitoring of the quality of work (Sadler, Knight)

Words that might describe a student answer

<table>
<thead>
<tr>
<th>Argued</th>
<th>Believed</th>
<th>Careless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td>Confident</td>
<td>Correct</td>
</tr>
<tr>
<td>Delusion</td>
<td>Hesitant</td>
<td>Ignorant</td>
</tr>
<tr>
<td>Justified</td>
<td>Knowledge</td>
<td>Lucky</td>
</tr>
<tr>
<td>Misconception</td>
<td>Misinformation</td>
<td>Reflected upon</td>
</tr>
<tr>
<td>Rigorous</td>
<td>Supported</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Understood</td>
<td>Unlucky</td>
<td>Wrong</td>
</tr>
</tbody>
</table>

Which deserve reward?

Words that might describe a student answer

<table>
<thead>
<tr>
<th>Argued</th>
<th>Believed</th>
<th>Careless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td>Confident</td>
<td>Correct</td>
</tr>
<tr>
<td>Delusion</td>
<td>Hesitant</td>
<td>Ignorant</td>
</tr>
<tr>
<td>Justified</td>
<td>Knowledge</td>
<td>Lucky</td>
</tr>
<tr>
<td>Misconception</td>
<td>Misinformation</td>
<td>Reflected upon</td>
</tr>
<tr>
<td>Rigorous</td>
<td>Supported</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Understood</td>
<td>Unlucky</td>
<td>Wrong</td>
</tr>
</tbody>
</table>

How can we reward these and encourage better learning?
Words that might describe a student answer

<table>
<thead>
<tr>
<th>Argued</th>
<th>Believed</th>
<th>Careless</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checked</td>
<td>Confident</td>
<td>Correct</td>
</tr>
<tr>
<td>Delusion</td>
<td>Hesitant</td>
<td>Ignorant</td>
</tr>
<tr>
<td>Justified</td>
<td>Knowledge</td>
<td>Lucky</td>
</tr>
<tr>
<td>Misconception</td>
<td>Misinformation</td>
<td>Reflected upon</td>
</tr>
<tr>
<td>Rigorous</td>
<td>Supported</td>
<td>Uncertain</td>
</tr>
<tr>
<td>Understood</td>
<td>Unlucky</td>
<td>Wrong</td>
</tr>
</tbody>
</table>

CBM rewards confidence in correct answers and reservation about wrong answers – placing a premium on reflection, justification & understanding.

What is knowledge?

- knowledge
- uncertainty
- ignorance
- misconception
- delusion

decreasing confidence in what is true, increasing confidence in what is false

Knowledge is intimately related to confidence, or degree of certainty

To philosophers: knowledge is justified true belief

We need to treat it as such:
- to reward not just truth
- but justification
- and discrimination of levels of certainty or belief

What is CBM? - experience it at www.ucl.ac.uk/LAPT

The UCL (LAPT) Confidence-Based Marking scheme

... applied to individual answers that will be marked right/wrong
... e.g. T/F, MCQ, EMQs, Numerical, Simple text

Degree of Certainty | 1 | 2 | 3
Score if Correct | 1 | 2 | 3
Score if Incorrect | 0 | -2 | -6

Best marks obtained if use when:

- Probability correct is: < 67% 67-80% >80%
- Odds are: < 2:1 > 2:1 > 4:1

With CBM you must think about justification

You gain:

EITHER if you find justifications for high confidence

OR if you see justifications for reservation.

Students adopt confidence-based marking very easily

Principles that students seem readily to understand:

- If you can’t judge the reliability of your knowledge (either over- or under-estimating it) – it will cause problems for later learning
- Confident errors are far worse than acknowledged ignorance and are a wake-up call (-6!) to pay attention to explanations
- Expressing uncertainty when you are uncertain is a good thing
- Students familiar with fixed negative marking (+1) particularly like the option to acknowledge low confidence and avoid risk of penalty.
- Thinking about the basis and reliability of answers can help tie bits of knowledge together (to form 'networks of understanding')
- Checking an answer and rereading the question are worthwhile
- Judging reliability of ideas should be a routine study habit

How well do the students discriminate reliability?

Bars show range including 90% of students

[331 students, 500 T/F exam questions, 2001]
Confidence (Degree of Belief)

Choice

Nuggets of knowledge

EVIDENCE

Confidence-based marking places greater demands on justification, stimulating understanding

To understand = to link correctly the facts that bear on an issue.

Justification requires understanding – so what is understanding?

Nuggets of knowledge

Confidence (Degree of Belief)

Inference

Choice

Networks of Understanding

Confidence-based marking places greater demands on justification, stimulating understanding

To understand = to link correctly the facts that bear on an issue.

UCL evaluation with K. Isroff (210 1st yr. medics, 65% response)

“How useful was confidence assessment?”

“Sometimes I change my answer while thinking about confidence assessment”

“How useful was confidence assessment?”

“Sometimes I change my answer while thinking about confidence assessment”

To understand = to link correctly the facts that bear on an issue.

Confidence based marking

Availability of LAPT:
Desk-top of College computer
Down load to home via disk or web

Alerting students:
In hard-copy Course Guides
Links in Students’ Intranet
Yr1 “How to study” session
Individual Lecturers
bush-telegraph

The skill of knowing how reliable your knowledge is

Nancy Curtin

6 Sept 2005, Improving Student Learning Symposium

Confidence based marking

Background:

Medical students:
~350 intake
1997 to date

Imperial Med Sch = CXWMS + Marys merge
New curriculum “Tomorrow’s Doctors”
mainly Yr1 & 2 of 6 yr course

Trial exercise
NAC Experience at ICL

CBM in LAPT: Self-assessment

Availability of LAPT:
Desk-top of College computer
Down load to home via disk or web

Alerting students:
In hard-copy Course Guides
Links in Students’ Intranet
Yr1 “How to study” session
Individual Lecturers
bush-telegraph
Sources of material:

- Exercises from individual lecturers (few)
- Specimen Examination papers
- Student summer projects financed by Med Sch
 Learning Resources Budget (popular)
- "Generic" pre-1997 question banks
- UCL exercises

Evaluation:

- Staff-Student Liaison Committee
- Not in SOLE
- Use statistics

CBM in LAPT: Self-assessment

Questions seen

Academic Year

CBM in Formative assessment:

1st trial in Jan 05 for Yr1 students

also 1st on-line Formative

Results:

Excellent student participation: >90%

staff enthusiastic

Disappointing performance.

Lack of practice?

Not "exam conditions"?

Future: Jan 06

Yr1 Formative to be repeated
New Yr2 Formative scheduled

Interest in extending use to other Yr1 & Yr2 Formatives
Interest among Clinical Examiners

Importance of Practice with CBM:

UCL students had had several compulsory online tests.

ICL students were encouraged to practice online, but many had not done much.

UCL students – compare online self-assessment with exams

Formative tests:

at UCL (150 Qs, paper), Imperial (45 Qs, online)

% correct

0% 20% 40% 60% 80% 100%

No. correct: scaled so chance=0%

CBM scaled: chance=0%

adj, lin'd

@C=1

@C=2

@C=3

F M F M
(i-c) (ex)

Mean +/- 95% confidence limits, 331 students
Are there students with poor calibration in exams?

- and how should one handle them?

Significantly overconfident in exam: 2 students (1%)

e.g. 50% correct @C=1, 59% @C=2, 73% @C=3

Significantly underconfident in exam: 41 students (14%)

e.g. 83% correct @C=1, 89% @C=2, 99% @C=3

(UCL Yr 1 2000/01 (500TF Qs))

Maybe one shouldn't penalise such students

Adjusted confidence-based score:

Mark the set of answers at each C level as if they were entered at the C level that gives the highest score.

mean benefit = 1.5% ± 2.1% (median 0.6%)

Issues about using CBM in exams?

- We introduced CBM in part because students said they would prefer it, following their experience using it for revision & practice
- **Transparency**, simplicity & motivation in the CBM scheme are important
- **Formative practice** is important, and possibly the most valuable thing
- Experience with formative practice doesn’t require exam board approval!
- **Reliability & Validity** of exam data have been increased
- **Passmarks** in exams can be set initially using % correct, as previously
- You can use **Virtual Learning Environments** & Optical Mark Readers

Reliability and Validity of Confidence-based exam marks

Exam marks are determined by:

1. the student’s knowledge and skills in the subject area
2. the level of difficulty of the questions
3. chance factors – how questions relate to details of the student’s knowledge and how uncertainties resolve (luck)

(1) = “signal” (its measurement is the object of the exam)

(3) = “noise” (random factors obscuring the “signal”)

Confidence-based marks improve the “signal-to-noise ratio.”

A simple & convincing test of this is to compare marks on one set of questions with marks for the same student on a different set (e.g. odd & even Q nos.). High correlation means the data are measuring something about the student, not just “noise.”

![Graph showing adjustment for over/under-confidence](image)

Adjustment for Over/Under-confidence

UCL (1st yr exams, '04), Imperial (Form. Test '04)

No. correct (scaled so chance=0%)

Cronbach Alpha (standard psychometric measure of 'reliability')

On six exams (mean ± SEM, n=6):

\[\alpha = 0.925 \pm 0.007 \text{ using CBM} \]

\[\alpha = 0.873 \pm 0.012 \text{ using number of items correct} \]

- The improvement (P<0.001, paired t-test) corresponds to a reduction of the random element in the variance of exam scores from 14.6% of the student variance to 8.1%.
- This almost halves the length of an exam for equivalent reliability

What tools are available to help?

- The website has tools & 1000s of example Qs:

- Publications: evaluation, statistics, pedagogy, concerns, review
- Authoring tool: full range of Q formats (TF, MCQ, EMQ, Number, text)
- Manual available for full options – conditional, random features etc.
- Conversion tools (e.g. from WebCT quiz format)
- Syntax checker (currently requires installation)
- Full character sets, HTML options available
- Use software from the UCL site, or install it locally. E.g. if you put your own exercise file at www.my_url.js, try www.ucl.ac.uk/lapt?www.my_url
- No new Q types are required – easy to adapt existing Qs or WORD files
- At UCL we can help with editing, VLE, OMR, any technical problems.

Confidence-Based Marking

= Certainty based Marking

= True-Knowledge based Marking

= Marking to stimulate understanding

What evaluation Qs would you like us to ask?

Examples:

- Rate on a scale from 1=strongly disagree to 5=strongly agree
 - CBM encourages me to think more carefully about answers.
 - If I am confident and wrong, then I deserve a penalty (negative mark).
 - CBM rewards gamblers rather than those who understand the topic well.

CONCLUSIONS

- CBM is core “Learning-Oriented Assessment”

 - to enhance self-monitoring
 - usable with existing/new exercises
 - encourages deeper thinking
 - rewards & trains an important generic skill
- Is about knowledge – not attitude or personality
- Improves the reliability of exams
 - (with formative practice of course)
- At UCL we will help you implement it

We fail if we mark a lucky guess as if it were knowledge.

We fail if we mark delusion as no worse than ignorance.

www.ucl.ac.uk/LAPT
Personality, gender, culture issues: real or imagined?

Does confidence-based marking favour certain personality types?

- Both underconfidence and overconfidence are bad!
- 'Correct' judgement is clear, desirable and trainable
- No gender or ethnic differences are evident (at least after practice)
- Students with confidence problems: this is the way to deal with it!

Confidence-Based Marking (CBM)

A student who can discriminate between reliable and unreliable answers deserves more credit than one who cannot, even when each gets the same number of answers correct.

CBM marks each answer according to the student’s degree of certainty that the answer is correct.

<table>
<thead>
<tr>
<th>Degree of Certainty</th>
<th>C=1 (low)</th>
<th>C=2 (mid)</th>
<th>C=3 (high)</th>
<th>No Reply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mark if correct</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Penalty if wrong</td>
<td>0</td>
<td>-2</td>
<td>-6</td>
<td>0</td>
</tr>
</tbody>
</table>

CBM rewards students who can reflect to the point that they can either:
(a) justify confidence in answers, or
(b) identify reasons for reservation.
It is motivating – always rewarding honest reporting of confidence.

Adjusted confidence-based scores are better predictors of conventional scores on a separate set of questions than are conventional scores.
Marks as a function of lack of knowledge defined by information theory, for T/F answers

\[\text{Mark assigned} = \begin{cases}
2 & \text{Lack of knowledge [bits]} = -\log_2(P) \\
0 & \text{Lack of knowledge [bits]} = 0 \\
-2 & \text{Lack of knowledge [bits]} = -\log_2(1-P)
\end{cases} \]

Rational and Irrational marking schemes

Breakdown of credit and variance due to uncertainty

Simple scores (scaled conventional scores) were scaled so chance gives 0%, total knowledge 100% (equivalent to +1 for correct, -1 for incorrect, 0 for omission).

- 65% of the variance came from answers at C=1, but only 18% of the credit.

Confidence scores: these give less weight to uncertain answers; uncertainty variance is then more in proportion to credit, and was reduced by 46% (relative to the variation of student marks).