
Introduction

Causal knowledge enables us to predict future events,
to choose the right actions to achieve our goals, and to
envision what would have happened if things had
been different. Thus, it allows us to reason about
observations, interventions, and counterfactual possi-
bilities. Philosophers and computer scientists have
begun to unravel the relations among these three
kinds of reasoning and their common basis in causal-
ity (e.g., Pearl, 2000; Spirtes, Glymour, & Scheines,
1993; Woodward, 2003).

Observations can provide some information about
the statistical relations among events. According to the
principle of common cause (Reichenbach, 1956),
there are three possible causal explanations for a reli-
able statistical relation between two events A and B:
A causes B, B causes A, or both events are generated by
a third event or set of events, their common cause. For
example, dieting and obesity are statistically related
because obesity causes people to go on a diet, because
dieting disturbs regulatory physiological processes that

eventually lead to obesity (many obese people went on
a diet before they became extremely overweight), or
because obesity and dieting may be causal conse-
quences of our modern eating habits. In this last case,
we can say that the correlation between obesity and
dieting is spurious. Regardless of the underlying causal
structure, an observation of one of these events allows
us to infer that other events within the underlying
causal model will be present or absent as well. Thus,
when we have passively observed an event, we can rea-
son backward diagnostically to infer the causes of this
event, or we can reason forward and predict future
effects. Moreover, we can infer the presence of spuri-
ously related events.

Interventions often enable us to differentiate
among the different causal structures that are compat-
ible with an observation. If we manipulate an event A
and nothing happens, then A cannot be the cause of
event B, but if a manipulation of event B leads to a
change in A, then we know that B is a cause of A,
although there might be other causes of A as well.
Forcing some people to go on a diet can tell us
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whether the diet increases or decreases the risk of
obesity. Alternatively, changing people’s weight by
making them exercise would show whether body mass
is causally responsible for dieting.

In contrast to observations, however, interventions
do not provide positive or negative diagnostic evi-
dence about the causes of the event on which we
intervened. Whereas observations of events allow us
to reason diagnostically about their causes, interven-
tions make the occurrence of events independent of
their typical causes. Thus, because of the statistical
independence created by interventions, these events
will occur with their usual base rate independent of
the outcome of an intervention. For example, forcing
somebody to eat 50 (and only 50) grams of fat per day
fixes fat intake independent of the presence or
absence of other factors normally affecting diet.

Counterfactual reasoning tells us what would have
happened if events other than the ones we are cur-
rently observing had happened. If we are currently
observing that both A and B are present, then we can
ask ourselves if B would still be present if we had
intervened on A and caused its absence. If we know
that B is the cause of A, then we should infer that the
absence of A makes no difference to the presence of B
because effects do not necessarily affect their causes.
But, if our intervention had prevented B from occur-
ring, then we should infer that A also would not
occur. For example, Morgan Spurlock (director and
guinea pig of the movie Supersize Me, released in
2004) ate fast food for 4 weeks and gained more than
20 pounds. What would have happened if he had not
eaten burgers and fries all the time? Assuming that his
heavy consumption of fast food was causally responsi-
ble for his increase in weight rather than the
increased weight being the cause of eating, we can
conclude that he would have stayed in better shape
without all the carbohydrates and fats.

The example indicates that counterfactual reason-
ing combines observational and interventional reason-
ing. First, we observe Morgan eating fast food and
gaining weight. Second, we assume that one of the
events had been different. We imagine him not eating
such a diet, while all other observed or inferred factors
(e.g., his genetic makeup, amount of physical exercise,
etc.) are assumed to stay at the observed level. Thus,
instantiating a counterfactual event is causally equiva-
lent to an imaginary intervention on a causal model in
which all variables that are not affected by the interven-
tion are assumed to stay at currently observed levels.

Finally, causal consequences of the intervention are
inferred on the basis of the given causal model. We
infer that Morgan would not have gained as much
weight as he did (see next section; Pearl, 2000; and
Sloman & Lagnado, 2005, for a more detailed discus-
sion of counterfactuals).

There are important differences among observa-
tion, intervention, and counterfactuals. Nevertheless,
they can be given a unified treatment within the
causal model framework. Whereas probabilistic and
associative accounts of causal knowledge fail to cap-
ture these three interrelated functions of causal
knowledge, causal Bayes nets do (Glymour, 2001;
Pearl, 2000; Spirtes et al., 1993). The next section
summarizes these accounts. Although causal Bayes
nets provide successful formal tools for expert systems,
few experiments have tested whether causal Bayes
nets also capture everyday reasoning with causal mod-
els by people who are not formally trained. The
remainder of the chapter presents experimental evi-
dence from the areas of logical reasoning, learning,
and decision making demonstrating the plausibility of
causal Bayes nets as psychological theories.

Modeling

We do not give a detailed description of causal Bayes
nets here (see Pearl, 2000, or Spirtes et al., 1993, for
detailed introductions). Research on causal Bayes
nets focuses not only on causal representation and
inference but also on other questions, such as those
regarding learning (see Lagnado, Waldmann,
Hagmayer, & Sloman, chapter 10, this volume
\edq1\). Here, we show how to derive predictions
from causal Bayes nets based on observations, inter-
ventions, and counterfactual assumptions. Although
causal Bayes nets provide tools for reasoning with
complex models, experimental studies typically pres-
ent problems that are within the grasp of naïve partic-
ipants. We therefore concentrate our brief
introduction on inferences using the three basic
causal models involving most research: common-
cause, common-effect, and causal chain models.
More complex models can be generated by combin-
ing these three models (see Sloman & Lagnado,
2005, and Waldmann & Hagmayer, 2005, for
research on more complex models).

Figure 6-1 shows the graphs for the three models,
with the nodes representing event variables and the

CAUSAL REASONING THROUGH INTERVENTION 87

\edq1\

Gopnik-CH_06.qxd  10/10/2006  12:40 PM  Page 87



arrows signifying direction of causal influence: (a) a
common-cause model in which a single cause X
influences two effects Y and Z, (b) a causal chain
model in which an initial cause X affects an interme-
diate event Y influencing a final effect Z, and (c) a
common-effect model in which two causes X and Y
independently influence a joint effect Z.

The graphs encode assumptions about dependence
and independence, simplifying the representation of
the causal domain. One important assumption under-
lying Bayes nets is the Markov assumption, which states
(informally) that each event in a causal graph is inde-
pendent of all events other than its descendants (i.e., its
direct and indirect effects) once the values of its parent
nodes (i.e., its direct causes) are known.

The graph of the common-cause model expresses
the spurious correlation between effects Y and Z
(because of their common cause) and their independ-
ence once the state of cause X is known. This is a con-
sequence of the Markov condition. Once we know that
X is present, the probability of Y is the same regardless
of whether Z is present. Similarly, the causal chain
implies that the initial cause X and the final effect Z are
dependent but become independent when the inter-
mediate event Y is held constant. Once we know that
Y, the direct cause of Z, is present, the probability of Z
stays constant regardless of whether X has occurred.
Finally, the common-effect model implies independ-
ence of the alternative causes X and Y and their
dependence once the common effect is held fixed.
This is an example of explaining away. X and Y should
occur independently, but once we know that X and its
effect Z are present, it is less likely that Y is also present.

Independence is advantageous in a probabilistic
model not only because it simplifies the graph by
allowing omission of a link between variables but
also because it simplifies computation. Conceived
as a computational entity, a Bayes nets is merely a

representation of a joint probability distribution—
P(X,Y,Z)\edq2\ in Figure 6-1—that provides a more
complete model of how the world might be by speci-
fying the probability of each possible state. Each
event is represented as a variable. Causal relations
have some relation to the conditional probabilities
that relate events; how conditional probabilities and
causal relations relate depends on one’s theory of the
meaning of causation. The factorizations of the three
models at issue are

Common cause: P(X, Y, Z) � P(Y | X) P(Z | X) P(X)

Causal chain: P(X, Y, Z) � P(Z | Y) P(Y | X) P(X)

Common effect: P(X, Y, Z) � P(Z | Y, X) P(Y) P(X)

The equations specify the probability distribution of
the events within the model in terms of the strength of
the causal links and the base rates of the exogenous
causes that have no parents (e.g., X in the common-
cause model). Implicit in the specification of the
parameters of a Bayes net are rules specifying how mul-
tiple causes of a common effect combine to produce
the effect (e.g., noisy or rule)\edq3\ or (in the case of
continuous variables) functional relations between vari-
ables. A parameterized causal model allows it to make
specific predictions of the probabilities of individual
events or patterns of events within the causal model.

Modeling Observations

Observations not only tell us whether a particular event
is present or absent but also inform us about other
events that are directly or indirectly causally related to
the observed event. Therefore, the structure of the causal
model is crucial for inference. Observing an event
increases the probability of its causes and its effects. For
example, if someone has a high level of cholesterol, then
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you can make the diagnostic inference that the person
has probably had an unhealthy diet (cause) and can
predict that the person’s risk of contracting heart prob-
lems is relatively high (effect). These inferences can be
justified on the basis of the structure of the causal
model. No specific information about the strength of
the causal relations or the base rates of the events is
necessary to make these qualitative predictions. More
specific predictions of the probabilities of events can be
made when the model is parameterized.

Formally, observations are modeled by setting the
event variables to the values that have been observed.
Based on our equations and the probability calculus,
the probabilities of other events conditional on the
observed variable can be calculated. The structure of
the causal model is crucial for these calculations.
Imagine that an effect Y of a common cause X that
also generates Z is observed. The resulting increase in
probability of the cause X can be computed using the
Bayes rule:

P(X � 1 | Y � 1) � P(Y � 1| X� 1) P(X � 1)/
[P(Y � 1| X� 1) P(X � 1) 
� P(Y � 1| X� 0) P(X � 0)]

For example, if the base rate of following an
unhealthy diet is P( X�1)�.5, the probability that
an unhealthy diet will cause being overweight is 
P( Y �1| X�1)�.9, and the probability of being over-
weight despite eating healthy food is P( Y�1 | X� 0)
�.1, then being overweight indicates a probability of
P(X � 1 | Y � 1) � .9 that the diet was unhealthy. The
probability of the other effect Z has to be computed by
using the updated probability of the common cause
and the conditional probability P(Z | X) referring to the
causal relation connecting the common cause and the
second effect. For example, if the probability of having
high levels of cholesterol given an unhealthy diet is 
P � .4 and P�.1 otherwise, then the observation of a per-
son’s being overweight implies that the probability of hav-
ing a high level of cholesterol is .37. Note that this
calculation rests on the assumptions that the events are
connected by a common-cause model. The same con-
ditional probabilities have different implications given
other causal structures.

Modeling Interventions

There are different types of intervention (see
Woodward, 2003). Interventions can interact with the

other causes of events. For example, when we
increase fat in our diet, then the resulting cholesterol
level in our blood depends on our metabolism, prior
level of cholesterol, and many other factors. The
causal Bayes net literature has focused on a specific
type of intervention that completely determines the
value of the variable the intervention targets (see
Pearl, 2000; Spirtes et al., 1993; Woodward, 2003).
For example, if we set the temperature of a room to
20°C, our intervention fixes room temperature while
disconnecting it from all its causes. In this chapter, we
focus on this strong type of intervention.

How can interventions be formally modeled? The
most important assumption can be traced to Fisher’s
(1951) analysis of experimental methods. Randomly
assigning participants to experimental and control
groups creates independence between the independ-
ent variable and possible confounds. Thus, if we, as
external agents, set cholesterol levels to a specific
value, then the level of cholesterol is independent of
other factors normally determining its level. To qual-
ify as an intervention of this strong kind, the manipu-
lation has to force a value on the intervened variable
(e.g., cholesterol), thus removing all other causal
influences (e.g., diet). Moreover, the intervention
must be statistically independent of any variable
that directly or indirectly causes the predicted event
(e.g., all causes of cholesterol), and it should not
have any causal relation to the predicted event except
through the intervened-on variable (see Pearl, 2000;
Spirtes et al., 1993; Woodward, 2003).

As with observation, predictions of the outcomes
of hypothetical interventions are based on specific
values of event variables, but whereas observations
leave the surrounding causal network intact, interven-
tions alter the structure of the causal model by render-
ing the manipulated variable independent of its
causes. Thus, predictions on the basis of interventions
need to be based on the altered causal model, not the
original model. For example, the passive observation
of low cholesterol level indicates a healthy diet
because of the causal link between diet and choles-
terol, but medically inducing a specific cholesterol
level does not provide evidence about a person’s
eating habits. Manipulating cholesterol independent
of the prior value and other factors creates independ-
ence between cholesterol level and diet. Thus, predic-
tions about eating habits can only be based on
assumptions about base rates, not on evidence about
cholesterol level.
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The changes in a causal model caused by
interventions (of the strong type) can be modeled by
procedures that Pearl (2000) vividly calls graph surgery.
These procedures result in a “manipulated graph”
(Spirtes et al., 1993). The key idea is that interventions
introduce an external independent cause that fixes the
value of the manipulated event. As a consequence, all
other causal arrows pointing toward this event need to
be removed because these causal influences are not
operative during the intervention. Thus, both types of
predictions are grounded in a representation of the
underlying causal model. However, whereas observa-
tional predictions are based on the original causal
graph, interventional predictions are based on the
manipulated graph. Figure 6-2 illustrates for the three
causal models from Figure 6-1 how observing differs
from intervening. In general, the manipulated graphs
are generated by removing the incoming causal links
that point to the manipulated variable.

Traditional Bayes nets (e.g., Pearl, 1988\edq4\) and
other probabilistic theories are incapable of distin-
guishing between observations and interventions
because they lack the expressive power to distinguish
observational and interventional conditional probabili-
ties. Both types are subsumed under the general concept
of conditional probability. To distinguish observations
from interventions, Pearl (2000), following previous
work by Spirtes et al. (1993), introduces a do-operator.

The do-operator represents an intervention on an event
that renders the manipulated event independent of all
its causes (i.e., it is the formal equivalent of graph sur-
gery).

For example, do(Y � 1)\edq5\ represents the event
that Y was fixed to the value of 1 by means of an inter-
vention. Thus, it implies the removal of all previous
causal influences in Y. Applying the do-operator
allows it to make specific interventional predic-
tions about events within the causal model. For exam-
ple, the equations for the factorization of the joint 
distribution of the causal chain model (Figure 6-2) in
which the intermediate event is observed to be present
(Y � 1) or manipulated [do(Y � 1)], respectively, are

Observation of Y: 
P(X, Y �1,Z) � P(Z | Y �1) * P(Y�1 | X) * P(X)

Intervention on Y: 
P(X, do(Y �1),Z) � P(Z | Y �1) * P(X)

If the parameters of the causal model are known, then
we can calculate the probabilistic consequences of
interventions. The hypothetical intervention on Y
(i.e., Y is fixed to the value of 1 and therefore known
to be present) in the causal chain implies that Z occurs
with the observational probability conditional on the
presence of Y (P(Z | Y�1), and that X occurs with a
probability corresponding to its base rate (P(X)).
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Notice that the interventional probability requires
fewer parameters because graph surgery involves sim-
plification by inducing independence between a vari-
able and its causes.

As a second example, consider the common-
cause model in Figure 6-1. Whereas observing Y
allows us to reason diagnostically back to its cause X
and then reason forward predictively to its spurious
correlate Z, predictions for hypothetical interven-
tions in effect Y need to be based on the manipu-
lated graph in Figure 6-2 in which the link between
X and Y is removed. Formally, this can be expressed
by the equation1\edq6\

P(X, do(Y �1), Z) � P(Z | X) P(X)

Thus, fixing Y at the value 1 removes the link to
this variable from the causal model. However, pre-
dictions are still possible on the basis of the manipu-
lated graph. The common cause X should occur
with a probability corresponding to its base rate, and
Z is determined by the base rate of its cause X and
the strength of the probabilistic relation between 
X and Z.

Modeling Counterfactuals

Counterfactuals combine observations and interven-
tions. The current state of the world is modeled as an
observation, and then the counterfactual is set by an
imaginary intervention altering the state of the
variables assumed to be different. For example, we
may currently tend to eat unhealthy fast food. For a
counterfactual analysis, we would first model this fact
as if it were an observation by inferring the conse-
quences for other unobserved events within the causal
model. We may infer that we have an increased prob-
ability of contracting diabetes. Next, we want to know
what would happen if we had eaten healthy food
instead. We model this counterfactual by means of a
hypothetical intervention that fixes the value of the
diet variable. Note that counterfactuals differ from
interventions because counterfactual interventions
alter causal models, which have been updated before
on the basis of the given facts.

As in the case of observations and interventions,
graphical causal models are sufficient to draw qualita-
tive inferences from counterfactuals. For example, con-
sider a causal chain model connecting diet, weight,
and diabetes. To model the statement, “If she were not

obese, she would not have developed diabetes,” we first
assume that we observe diabetes and obesity in a
woman. Based on these observations, we can infer that
the woman probably tends to eat an unhealthy diet.
Next, we hypothetically eliminate obesity by means of
an intervention that influences this variable by means
of a factor external to the chain model (e.g., by assum-
ing that the woman exercises a lot). This hypothetical
intervention would cut the causal link between diet
and weight, but the link between weight and diabetes
would stay intact. Therefore, the counterfactual
implies that the person in this alternative world would
be spared diabetes, while her eating habits would stay
the same.

Formal modeling of counterfactuals requires
updating of the model twice. First, the probabilities of
all events are calculated conditional on the facts
stated in the counterfactual treating facts as observa-
tions. Second, the counterfactual event is set by the
do-operator, which entails a reanalysis of the probabil-
ities of the events in the manipulated graph. Thus,
assuming the validity of the causal model and the
attached parameters, causal Bayes nets allow us to
generate precise predictions for counterfactuals.

Summary

Causal Bayes nets capture the structure of causal
models. They allow us to generate qualitative predic-
tions for observations, interventions, and counterfac-
tuals. Moreover, parameterized causal models enable
us to make precise predictions about the probabilities
of events within the causal model. Whereas observa-
tional predictions are within the grasp of traditional
associative or probabilistic (including Bayesian) theo-
ries, modeling interventions and counterfactuals tran-
scends the conceptual power of these models. To
model hypothetical interventions and counterfactuals
correctly, a preliminary stage has to be assumed in
which the structure of the causal model generating
the predictions is modified. Based on this modified
causal model, precise predictions can be made for sit-
uations that may never before have been observed.

The distinction between observation and inter-
vention is crucial for the theory of causal Bayes nets.
Although observations allow drawing inferences about
causes and effects of the observed event, interventions
cut the event off from its causes by deleting the causal
links pointing toward the event. Sloman and Lagnado
(2005) coined the term undoing for this process. 
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If causal Bayes nets are veridical models of intuitive
human causal reasoning, then participants have to be
sensitive to undoing. Thus, a key issue will be whether
human participants are capable of predicting out-
comes of hypothetical interventions and of reasoning
about causal counterfactuals. This compe-
tency would imply that people have access to reason-
ing processes that modify causal representations prior
to deriving predictions. The next three sections report
evidence concerning this question.

Causal Reasoning Versus Logical
Reasoning

Causal Bayes nets can be used to represent and model
qualitative logical inferences in causal domains. One
implication of this account is that causal inference
differs from inference in a context in which the stan-
dard rules of propositional logic also apply. Although
standard logic does not distinguish between the obser-
vation of an event and the generation of the same
event by an intervention, the distinction is central to
causal Bayes nets. Causal models have the ability to
represent both action (intervention in the world) and
imagination (intervention in the mind). If participants
are sensitive to the difference between observation
and intervention, then they should infer that the
observation of an event is diagnostic of the presence of
its causes, but when the same event is physically or
mentally manipulated, it no longer is.

Observation Versus Intervention in
Counterfactual Scenarios

To verify that people are sensitive to the difference
between observation and intervention, Sloman and
Lagnado (2005) gave a group of students the follow-
ing scenario:

All rocketships have two components, A and B.
Movement of Component A causes Component B
to move. In other words, if A, then B. Both are
moving.

Notice that this scenario describes the simplest
possible causal model involving only a single link (see
Figure 6-3). Furthermore, the current values of the
variables A and B\edq7\ are stated.

After reading the scenario, half the group was
then asked the observational counterfactual ques-
tion concerning what they would expect if they had
observed components not moving: (a) Suppose
Component B were observed to not be moving,
would Component A still be moving? The other
half was asked the interventional counterfactual
question concerning what they would expect if
components had been intervened on and thereby
prevented from moving: (b) Suppose Component B
were prevented from moving, would Component A
still be moving?

The difference between observation and interven-
tion should show up in the comparison of (a) and (b).
Observing that the effect B is not moving should be
diagnostic of A, suggesting that A also is not moving. In
contrast, the logic of intervention says that we should
represent an intervention on B as P(A moves | do(B
does not move)), which reduces to P(A moves)
because B is disconnected from its normal cause A
under the do operation. As participants were told
before that A is moving, they should stick to that belief
and answer yes. This is just what happened: 85% of
participants answered yes to (b) but only 22%
answered yes to (a). B’s movement was only treated as
diagnostic of A’s movement when B was observed not
to move, not when its movement was prevented. This
shows that people are sensitive to the logic of a coun-
terfactual intervention in a situation with a transparent
causal structure.

Causal Reasoning Versus Propositional Logic

The causal model framework predicts that people are
sensitive to the logic of intervention when reasoning
causally, not necessarily when reasoning in other
ways. Sloman and Lagnado (2005) compared reason-
ing in a situation with causal relations to one with par-
allel relations that were not causal.
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FIGURE 6-4 Causal chain model used by Sloman and Lagnado (2005).

Consider the following causal problem described
in terms of conditional (if … then) statements:

Causal conditional: There are three billiard balls
on a table that act in the following way: If Ball 1
moves, then Ball 2 moves. If Ball 2 moves, then
Ball 3 moves.

Imagine that Ball 2 could not move. Would
Ball 1 still move?

The fact that we are talking about billiard balls—
prototypical causal elements—strongly suggests that
the conditional statements should be interpreted as
describing causal relations. The causal model under-
lying this scenario is depicted in Figure 6-4.
The causal modeling framework represents the two
questions using the do-operator because an outside
agent is preventing the ball from moving, represented
as do(Ball 2 does not move):

P(Ball 1 moves | do(Ball 2 does not move)).
To evaluate this, we must assume that Ball 2 does

not move. We must also simplify the causal model
by removing any links into Ball 2 as depicted in
Figure 6-5.
It is immediately apparent, parallel to the last exam-
ple, that the value of Ball 1 is no longer affected by
Ball 2, and therefore the causal Bayes model frame-
work predicts that Ball 2’s lack of movement is not
diagnostic of its normal cause, Ball 1. Of participants,
90% agreed, affirming that Ball 1 could move if Ball
2 could not.

Standard propositional logical systems have no
way to represent this argument. They not only do not
have a representation of cause, but also have no way

of representing an intervention. A conventional logical
analysis of this problem might go as follows: The prob-
lem tells us that if Ball 1 moves, then Ball 2 moves. We
know that Ball 2 does not move. Therefore, Ball 1 does
not move by modus tollens.\edq8\ This particular argu-
ment does not explain people’s judgments, which are
that Ball 1 can move even if Ball 2 cannot.

In the noncausal realm, modus tollens can be a
perfectly valid form of argument for deriving definite
conclusions. For example, modus tollens would be an
appropriate inference scheme to use on a problem
similar to the causal one just shown but based on log-
ical if-then relations rather than causal ones. Maybe
people would make inferences conforming to modus
tollens with such an argument. To find out, Sloman
and Lagnado (2005) gave a group of people the
following scenario:

Logical conditional. Someone is showing off her
logical abilities. She is moving balls without break-
ing the following rules: If Ball 1 moves, then Ball
2 moves. If Ball 2 moves, then Ball 3 moves.

Sloman and Lagnado then asked the group the same
question as for the causal case:

Imagine that Ball 2 could not move, would Ball 1
still move?

In this case, only 45% of participants said yes. The
majority gave the inference consistent with modus
tollens, no. Clearly, there is less consistency than in
the causal case, probably because participants are
more confused in a logical than in a causal context.
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Their answers are more wide ranging, and they tend
to express less confidence. People’s discomfort with
logical problems relative to causal ones arises either
because there are different forms of logic and they are
not sure which one to pick or because no form of
deductive logic comes naturally.

The experiments by Sloman and Lagnado (2005)
show that causal reasoning is not adequately modeled
by neither standard propositional logic formalisms
nor traditional probabilistic theories that do not distin-
guish intervention from observation. Causal Bayes
nets are the best currently available account that mod-
els this competency.

Reasoning With Parameterized 
Causal Models

The preceding section showed that people can reason
qualitatively with causal models, and that they distin-
guish between observation and intervention.
Waldmann and Hagmayer (2005) have addressed
similar questions in the realm of learning. Following
the framework of causal model theory (Waldmann,
1996; Waldmann & Martignon, 1998; see also
Lagnado et al., chapter 10, this volume\edq9\), partic-
ipants were instructed about a causal model underly-
ing the learning domain prior to receiving learning
data. The learning data consisted of individual cases
that allowed participants to estimate the parameters of
the assumed causal model (e.g., causal strength, base
rates). The main questions were whether learners
were capable of deriving precise predictions on the
basis of the parameterized models and whether their
predictions differ depending on whether the predic-
tions are based on hypothetical observations or hypo-
thetical interventions. Again, causal Bayes nets
provided the formal tools to analyze this competency.

Associative theories are the dominant approach in
the realm of learning. They can differentiate between
observing and intervening by postulating separate learn-
ing modes: Whereas classical conditioning might be
viewed as underlying prediction, intervention might be
driven by instrumental conditioning (Dickinson, 2001;
see Domjan, 2003, for an overview). Thus, we might
learn in an observational learning paradigm (classical
conditioning) that the barometer reading predicts the
weather; in an interventional learning paradigm
(instrumental learning), we might also learn that fid-
dling with the barometer does not change the weather.
However, although this approach approximates causal

knowledge in many contexts, it fails to capture the
relations between observation and intervention. The
separation between classical and instrumental condi-
tioning predicts that, without a prior instrumental
learning phase, we should be incapable of correctly
predicting what would happen in case of an interven-
tion in situations in which our knowledge is based on
observational learning. Our experiments show that this
is wrong. People not only were capable of deriving pre-
dictions for hypothetical interventions after a purely
observational learning phase, but also their predictions
were sensitive to the structure of the underlying causal
model and the size of the parameters.

Predicting the Outcomes of Hypothetical
Interventions From Observations

Experiment 2 of Waldmann and Hagmayer (2005) pro-
vides an example of the learning task. In this experi-
ment, participants were taught either a common-cause
or a causal chain model. In a fictitious medical sce-
nario that involved hormone levels of chimpanzees,
they were told either that an increased level of the hor-
mone pixin causes an increase in the level of sonin and
of xanthan (common-cause model), or that an increase
in the level of sonin causes the level of pixin to rise,
which in turn increases the amount of xanthan (causal
chain model) (see Figure 6-6). Waldmann and
Hagmayer compared these two models because the
common-cause model implies a dissociation between
observational and interventional predictions, whereas
the chain model implies identi-cal predictions for both
types, allowing us to test whether people correctly dif-
ferentiate between causal models.

After the initial instructions, participants received
descriptions of the hormone levels of a set of 20 indi-
vidual chimpanzees as observational data. The causal
relations were probabilistic (see Fig 6-6). Using the
data, learners could estimate the parameters of the
causal models. Causal chain and common-cause
models have the same structural implications (they are
Markov equivalent); therefore, only one set of data was
presented that was coherent with both. The models
and the implied parameters are shown in Figure 6-6.

A Bayesian analysis of these parameterized models
implies for both models that the probability 
of increased levels of xanthan conditional on sonin
being observed to be at an elevated level is
P(X �↑ S�↑)�.82,\edq10\ whereas the correspon-
ding conditional probability is P(X�↑ S� ↔) �.18
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when the sonin level is normal. The base rate of the
exogenous causes in both models (i.e., sonin in the
common-cause model, pixin in the chain model) was
set to 0.5.

For the causal chain model, the interventional
probabilities are identical to the observational proba-
bilities. For example, regardless of whether sonin is
observed to be increased or whether an increased level
was caused by means of an inoculation, the other two
hormones should be affected equally. However, an
intervention on sonin in the common-cause model
entails the removal of the causal arrow connecting
pixin and sonin. Therefore, the probability of xan-
than depends only on the base rate of its cause pixin
and the causal impact of this hormone on xanthan.

Thus, the interventional probability of xanthan is
P(X �↑ do[S�]) �P(X�↑ do[S � ↔]) �.5,
regardless of whether sonin is increased or normal.

To test whether participants’ judgments follow these
predictions, they were asked to make predictions about
hypothetical observations and hypothetical interventions
after having studied the learning data. All participants
were requested to estimate for a set of 20 new, previously
unseen chimpanzees the number of animals showing
elevated levels of xanthan based on the hypothetical
observation that sonin was at either an increased or nor-
mal level in these animals. The corresponding questions
about hypothetical interventions asked participants to
imagine inoculations that increased or lowered the level
of sonin in the 20 animals. The order of the test
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FIGURE 6-6 Conditions and data of Experiment 2 by Waldmann and Hagmayer (2005). Upward arrows sym-
bolize increased hormone levels; sideways arrows indicate normal levels. The parameters represent causal
strength (conditional probabilities) and base rates (unconditional probabilities).
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FIGURE 6-7 Results of Experiment 2 of Waldmann and Hagmayer (2005). Mean responses and predicted
frequencies to observation and intervention question.
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questions was counterbalanced. The mean response to
the test questions and the answers predicted by the
causal model framework are shown in Figure 6-7.

The pattern of results shows that participants
correctly differentiated between observational and inter-
ventional predictions, and that they were sensitive to the
different implications of the contrasting causal models.
Whereas for the causal chain model learners correctly
predicted similar levels of xanthan independent of
whether sonin levels were observed or generated, a clear
dissociation was observed for the common-cause model.
The majority of participants concluded that the proba-
bility of xanthan is independent of the type of interven-
tion on sonin. A second interesting finding was that, on
average, estimates were as predicted, although in some
cases there was a slight tendency to underestimate. The
largest deviation between the estimates and the norma-
tive values was found for the intervention lowering the
level of sonin (second pair of columns in Figure 6-7),
which is probably because participants had no data
about what would happen if the level of one hormone
fell below a normal level.

These results are beyond the grasp of associationist
theories. This is most obvious in the common-cause
model in which the predictions of the outcomes of
the hypothetical interventions turned out close to the
predicted value of 50%, even though participants had
never observed this value in the learning phase. These
predictions clearly support causal models as descrip-
tions of human reasoning. Apparently, reasoners rely
not only on the observed associations but also on the
underlying causal model to generate predictions.

Sensitivity to Parameters

To examine whether learners used the learned param-
eters for their predictions, Waldmann and Hagmayer
(2005) ran additional studies manipulating parameter
values across conditions. Their Experiment 4 provides

an example of this manipulation. In this experiment,
participants were instructed that a fictitious bacterial
infection in dogs has two causal effects, gastric prob-
lems and increased antibodies (i.e., common-cause
model). In two conditions, two different data sets were
shown to participants in a list format. The two data sets
varied the strength of the two causal relations. In one
condition (“strong-weak”), the bacterial infection had
a strong influence on gastric problems (�P � .91) and
only a medium influence on the presence of antibod-
ies (�P � .45). (�P is a measure of contingency that
reflects the numeric difference between the probabil-
ity of the effect, gastric problems, conditional on the
presence and absence of the cause [e.g., bacterial
infection].) In the other condition, the assigned causal
strength was reversed (“weak-strong”) (see Figure 6-8).
The base rate was the same (0.55) in both conditions.

Participants were requested to estimate the fre-
quency of antibodies in a new set of 20 dogs assuming
either that gastritis was observed to be present or absent
or that the presence or absence of gastritis was caused
by means of an external intervention (inoculation).

Although the structure of the causal model is identi-
cal in both conditions, the parameters implied by the
two data sets have distinctive implications for the 
different types of predictions (see Figure 6-8). Because of
the underlying common-cause model, an external inter-
vention in gastric problems has no causal influence on
the infection rate and the presence of antibodies. This is
because of graph surgery, which requires removal of the
causal arrow between the common-cause infection and
gastritis. The probability of antibodies is solely deter-
mined by the base rate of the bacterial infection and its
causal impact on the antibodies. Therefore, antibodies
are more likely in the condition in which bacterial infec-
tion has a strong influence (i.e., weak-strong) than when
it has only a weak impact (i.e., strong-weak).

The different parameters in the two conditions
imply different predictions not only for the intervention
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FIGURE 6-8 Conditions and data of Experiment 4 of Waldmann and Hagmayer (2005).
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questions but also for the observation questions. In
general, the implied probabilities are higher if gastri-
tis is observed to be present than if it is absent. In
addition, the probability of antibodies is higher in
the weak-strong condition than in the strong-weak
condition.

In Figure 6-9, the mean responses are compared
with the values predicted by the causal model. The
results show that participants again differentiated
between predictions for hypothetical observations and
hypothetical interventions. Moreover, the estimates
also demonstrate that participants were sensitive to the
parameters of the causal model. On average, partici-
pants’ estimates were quite accurate, although there
were again small deviations that could be due to
regression effects. This competency is rather surprising
considering the complexity of the task.

Sensitivity to the size of parameters was not shown not
only for the causal strength parameters but also for the
base rate parameters. In another experiment (Waldmann
& Hagmayer, 2005, Experiment 3), the base rate of the
common cause was manipulated while holding causal
strength constant. This should particularly affect the
interventional predictions (based on interventions on the
first effect) as the probability of the predicted second
effect in this case varied in proportion to the base rate of
its cause (see Figure 6-2). The results showed that partic-
ipants incorporated the base rate information in their pre-
dictions in a way that was surprisingly close to the
normative predictions of causal Bayes nets.

Causal Decision Making

The distinction between observation and interven-
tion also has practical implications for decision mak-
ing. For example, if we observe low values on a
barometer, then we will probably take our umbrella
because the probability of rain is high. But, we also
know that setting the barometer by means of an inter-
vention will not affect the weather. The evidential
relation between the barometer reading and the
weather is spurious and mediated by atmospheric
pressure, which acts as a common cause that inde-
pendently affects the barometer and the weather.
Thus, observing a low reading of the barometer
because of tampering should not influence our deci-
sion to take an umbrella. This example shows that
causal models and the distinction between observa-
tion and intervention are highly relevant to decision
making. Specifically, choice is a form of intervention
and should be modeled as such by breaking the edge
between the variable with the value that is chosen
and its normal causes. However, most theories of
decision making, certainly most normative theories,
analyze decision making on the basis of evidential
relations between variables (e.g., subjective expected
utility theory).

In contrast, in line with the analyses of causal
Bayes nets and previous work on causal expected util-
ities (Nozick, 1969, 1995), Hagmayer and Sloman (in
preparation) propose that choice is equivalent to an
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intervention in a causal network. They claim that in
decision making people first consider a causal model
of the decision context and then explore the causal
consequences of their possible interventions.

Simple Choices

Hagmayer and Sloman presented participants with
simple decision problems, such as the following:

Recent research has shown that of 100 men who
help with the chores, 82 are in good health,
whereas only 32 of 100 men who do not help with
the chores are. Imagine a friend of yours is married
and is concerned about his health. He read about
the research and asks for your advice on whether
he should start to do chores or not to improve his
health. What is your recommendation? Should he
start to do the chores or not?

Hagmayer and Sloman also provided participants in
different conditions with one of two causal models that
might underlie the correlation between chores and
health. In one condition, the relation was because of a
common cause, the degree of concern, that independ-
ently influences the likelihood of doing the chores and of
entertaining health-related activities, or in the alternative
direct-link model, it was pointed out that chores are an
additional exercise directly improving health.

Participants received several different decision
problems involving a range of issues, from the rela-
tion between high-risk sports and drug abuse to the
relation between chess and academic achievement.
If participants equate choices with interventions,
then they should often recommend not acting in the
common-cause condition because intervening on an
effect of a common cause does not alter the spuri-
ously correlated collateral effect. Such an interven-
tion would simply render the action independent of
the rest of the model, including the desired outcome.
In contrast, in the second condition, participants
should recommend doing the chores because this
variable is directly causally related to health.
Participants’ judgments turned out to be in accor-
dance with the causal model theory of choice.
Despite learning about an identical evidential rela-
tion, only 23% of the participants in the common-
cause condition advised their hypothetical friend to
act, in contrast to 69% of the participants in the
direct-link condition.

Complex Choices and Newcomb’s Paradox

The difference between observational and interven-
tional probabilistic relations is crucial in more
complex cases as well. Newcomb’s paradox is an
interesting test case because it involves a conflict
between two principles of good decision making: 
(a) maximizing expected utility and (b) dominance
(i.e., choosing the option that always leads to the
better outcome) (see Nozick, 1969, 1995). Classical
decision theory cannot handle this paradox as it has
no principled way to choose between these alterna-
tive criteria; however, a causal analysis in some 
cases can.

Table 6-1 illustrates a variant of Newcomb’s para-
dox that Hagmayer and Sloman used in an experi-
ment. In this experiment, students were asked to
imagine being the marketing executive of a car
manufacturer and having to choose between two
advertising campaigns. The manufacturer could pro-
mote either their sedan or their minivan. However,
according to the instructions, the expected sales
depend not only on the executive’s decision but also
on the marketing decision of the manufacturer’s main
competitor (see Table 6-1).

As the payoff matrix of Table 6-1 shows, higher
sales are expected for the minivan regardless of the
competitor’s campaign. Therefore, the principle of
dominance prescribes promoting the minivan.
However, participants were also informed that in the
past the two car companies ended up promoting the
same type of car in 95% of the cases, with either car
promoted equally often. If this additional information
is taken into account, then the expected value of
promoting the sedan turns out to be higher than that
of the minivan (29.250 vs. 21.000). Thus, the princi-
ple of maximizing expected value implies the oppo-
site of the principle of dominance.

To investigate the influence of the assumed causal
model, participants were also informed about the
causal relations underlying the observed evidential
relations. In one condition, participants were told that
the competitor tends to match the participant’s strategy
(direct-cause model); in the other condition, they were
told that both car companies make their decisions
independently based on the market (common-cause
model). After considering the information, partici-
pants were requested to choose one of the available
options.
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Under the direct-cause model, the evidential prob-
abilities between the choices of the two competitors
indicate a stable causal relation. Therefore, the causal
expected utility equals the evidential expected utility,
and the sedan should be promoted. In contrast, under
a common-cause model, the choice should be viewed
as an intervention that is independent of the competi-
tor’s choice, with the competitor supposed to choose
on the basis of the state of the market. Because a free
choice destroys the evidential relation between the
choices of the participant and the hypothetical com-
petitor, the assumption that both choices are almost
guaranteed to coincide is no longer tenable. Thus, the
dominant option is the best choice under a common-
cause model.

These results show that decision makers were sen-
sitive to the structure of the underlying causal model,
and that they tended to treat choices as interventions.
Whereas traditional theories of decision making fail,
causal Bayes nets provide a coherent account to
model decision making in causal domains.

Final Remarks

Causal Bayes net theories differentiate between pre-
dictions based on observations, interventions, and
counterfactuals. In this chapter, we reviewed evi-
dence concerning this distinction. Traditional proba-
bilistic and associationist theories are incapable of
distinguishing between the different predictions
entailed by hypothetical observations and interven-
tions. The results of the experiments show that people
are remarkably good at distinguishing between predic-
tions based on observed events on one hand and pre-
dictions based on hypothetical interventions on the
other. Although observational predictions are based
on the structure of a relevant causal model, interven-
tions require mentally modifying the model prior to
deriving predictions by “undoing” the link between

the intervened-on variable and its causes. People not
only are capable of deriving qualitative predictions
implied by the structure of a causal model, but also
proved capable of incorporating learned quantitative
parameters in their predictions (Waldmann &
Hagmayer, 2005).

It turns out that children also excel at differentiat-
ing interventions from observations (see Gopnik &
Schulz, this volume\edq11\). They proved capable of
deriving predictions for novel interventions from
previous observations. For example, in one experi-
ment children were shown different causal struc-
tures, such as a switch turning a gear A, which spins
a second gear B. Children 4.5 years old were able to
predict what would happen if either of the gears was
placed on a toy and the switch turned on. Although
they expected Gear A to spin, they did not expect
Gear B to rotate. This shows that children are able to
derive correct predictions, at least for simple, deter-
ministic causal structures (see Gopnik & Schulz’s
chapter\edq12\ for more details and further
evidence).

The distinction between observation, interven-
tions, and counterfactuals is relevant not only for
inference within a causal model, but also for the
induction of causal models (in this volume, see the
Gopnik & Schulz; Lagnado et al., chapter 10; Sobel,
chapter 9; Griffith & Tenenbaum, chapter 20,
\edq13\ for theory and evidence). The empirical
results indicate that adults as well as children can
infer causal models using evidence from observations
and interventions together (Gopnik et al., 2004,
Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003;
Tenenbaum & Griffiths,\edq14\ 2003). However,
people seem to have a limited capacity to derive
causal models based on observations alone
(Hagmayer, 2001; Lagnado & Sloman, 2004).

The evidence reviewed in this chapter strongly
suggests that people find it natural and easy to draw
different inferences from observations and from
interventions when reasoning and when making
decisions. The difference between observation and
intervention has to do with why an event occurs or
how a variable obtains its value (i.e., with the
mechanism that produces the event or value).
Hence, the distinction between observation and
intervention is grounded in causal knowledge, in an
understanding of the mechanisms that produce
change. Thus, people’s ease of reasoning about
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TABLE 6-1 Payoff Matrix ($)

Additional Competitor Promotes Competitor Promotes
Sales Sedan Minivan

You promote sedan 30,000 15,000

You promote minivan 40,000 20,000

Source: Hagmayer and Sloman (in preparation).

\edq11\

\edq12\

\edq13\

\edq14\
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observation versus intervention would seem to indi-
cate quite directly competence with causal reason-
ing, and this would be a direct consequence of a
system that is designed for action, for achieving
effects through intervention.
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