Eye Therapy News

Professor Ali honoured for his contribution to research into retinal disease

Mon, 08 Sep 2014 12:27:36 +0000

              Professor Robin Ali, PhD, Professor of Human Molecular Genetics and Head of the Department of Genetics, UCL Institute of Opthalmology has been awarded the Pioneer Award for his work in proof-of-concept studies that have demonstrated the feasibility of using gene therapy and cell transplantation to treat dysfunction and degeneration of the cells […]


Achromatopsia might not be as progressive as previously thought

Mon, 08 Sep 2014 11:17:16 +0000

A recent publication from the UCL Institute of Ophthalmology, Moorfields Eye Hospital, and the Medical College of Wisconsin indicates that for the majority of people with achromatopsia, the condition may not be as progressive as previously suggested. Data from this study by Aboshiha et al. demonstrated that for the majority of people with achromatopsia (a […]


2 Lazy 2 Run? We’re biking it for blood cancer!

Fri, 29 Aug 2014 09:30:05 +0000

  On Sunday 31 August a group of not so elite athletes from the Gene and Cell Therapy group will be taking part in the London Bikeathon 2014 to raise funds for Leukaemia & Lymphoma Research. The 2 Lazy 2 Run CC will be cycling 52 miles – that’s more than a marathon, no mean feet […]


The Art of Eyes

Thu, 07 Aug 2014 14:23:19 +0000

The eye is an object of great beauty as shown by the Ophthalmologist in their July/August 2014 issue. This month’s issue features a photo essay called The Art of the Eyes and includes examples of the work from a number research labs capturing the complex and beautiful detail of the eye and its cells. The essay includes images […]


In memoriam

Tue, 05 Aug 2014 16:02:34 +0000

Dr Yoshiki Sasai (1962 – 2014) It is with great sadness today that we remember and pay tribute to our collaborator Dr Yoshiki Sasai. Yoshiki was a world leading stem cell researcher and Deputy Director of the Riken Center for Developmental Biology in Kobe, Japan. Through his hard work and dedication over many years, Yoshiki […]


Gene therapies for diabetic eye disease

Diabetes harms the retina and is a leading cause of severe sight impairment. Find out about how you can support our work and help develop effective therapies.

Current treatments for diabetic eye disease can help some people to some extent but do not work reliably and have harmful side effects. We aim to develop new treatments that can protect the circulation in the retina and promote the healthy function of its nerves. We are working to understand the ways that diabetes can harm the retina and to develop new treatments, including gene and cell therapies.

We can model the damage to the retina caused by growth of leaky blood vessels which allows us to test novel treatments
We can model the damage to the retina caused by diabetes. This allows us to test novel treatments. Left panel: leaky blood vessels growing into the retina of a person with diabetes, which can harm sight. Right panel: mouse retina showing a lack oxygen (green) caused by similar damage to that seen in diabetes.

Diabetic eye disease shares many features with AMD, with the growth of abnormal and leaky blood vessels common to both. Current treatments are not effective for all patients and have significant side effects, which means developing gene delivery to control the growth of abnormal and leaky blood vessels is an attractive option (Bainbridge et al 2003).

We are also investigating the role of oxygen in diabetic eye disease (Lange et al 2011), as disturbances to the delivery and usage of oxygen caused by diabetes are an important factor in the damaging growth of new blood vessels. We have shown that a molecule that helps regulate how cells respond to a lack of oxygen, known as HIF-1, plays a crucial role in the growth of abnormal and leaky blood vessels (Mowat et al 2010). Together these results show the important role that the control of oxygen levels in the retina plays in diabetic eye disease as well as in AMD and may help identify new drug targets.

We have shown proof-of-concept that gene delivery of the sFlt1 gene can reduce the growth of abnormal blood vessels in a diabetes disease model (Bainbridge et al 2002). A clinical trial of AAV-sFlt1 delivery is now being carried out by a group in Australia

Page last modified on 05 feb 13 10:02