
Some Alternative Formulations of the Event
Calculus

Rob Miller1 and Murray Shanahan2

1 University College London, London WC1E 6BT, U.K.
rsm@ucl.ac.uk

http://www.ucl.ac.uk/~uczcrsm/
2 Imperial College of Science, Technology and Medicine, London SW7 2BT, U.K.

m.shanahan@ic.ac.uk

http://www-ics.ee.ic.ac.uk/~mpsha/

Abstract. The Event Calculus is a narrative based formalism for rea-
soning about actions and change originally proposed in logic program-
ming form by Kowalski and Sergot. In this paper we summarise how
variants of the Event Calculus may be expressed as classical logic ax-
iomatisations, and how under certain circumstances these theories may
be reformulated as “action description language” domain descriptions
using the Language E . This enables the classical logic Event Calculus to
inherit various provably correct automated reasoning procedures recently
developed for E .

1 Introduction

The “Event Calculus” was originally introduced by Bob Kowalski and Marek Ser-
got [33] as a logic programming framework for representing and reasoning about
actions (or events) and their effects, especially in database applications. Since
then many alternative formulations, implementations and applications have been
developed. The Event Calculus has been reformulated in various logic program-
ming forms (e.g. [11], [12], [21], [23], [29], [53], [58], [71], [72], [73],[74]), in classical
logic (e.g. [62], [42], [43]), in modal logic (e.g. [2], [3], [4], [5], [6], [7]) and as an
“action description language” ([21], [22]). In one form or another it has been
extended and applied, for example, in the context of planning (e.g. [15], [8], [19],
[44], [45], [63], [65], [20]), cognitive robotics (e.g. [60], [61], [65], [67]), abductive
reasoning (e.g. [11], [44], [45], [71] and [72]), database updates (e.g. [29], [72]),
accident report processing [35], legal reasoning [30], modelling continuous change
and mathematical modelling (e.g. [42], [58], [71]), modelling and reasoning about
agent beliefs [35], reasoning about programming constructs [10, 68], and software
engineering [52].

In spite of this growing menagerie of Event Calculus formulations and ap-
plications, relatively little work has been done to show how the various versions
correspond. (Indeed, much more work has been done on showing how the Event
Calculus corresponds to the Situation Calculus, see e.g. [21], [31], [32], [41], [48],
[49], [73], [74].) This article is an attempt to begin to address this issue. We first

summarise recent work (e.g. [62], [42], [43]) on axiomatising the Event Calculus in
classical logic, using circumscription as a method for default reasoning to solve
the frame and related problems. We then describe how under certain circum-
stances such classical logic theories may be reformulated as “action description
language” domain descriptions using the Language E [21, 22]. This enables the
classical logic Event Calculus to inherit various provably correct, logic program-
ming and/or argumentation based automated reasoning procedures developed
for E in [21], [22], [23] and [24].

Even if attention is restricted to classical logic formulations of the Event
Calculus, there are a number of different choices or variations for the core set
of axioms. The various alternatives are each geared to classes of domains with
particular restrictions or features; for example to describe systems most naturally
viewed as deterministic, as involving both continuous and discrete change, or
which require reasoning about the future but not the past. In view of this, we
first present (in Section 2) one particular (basic) form of the Event Calculus with
six domain independent axioms labeled (EC1) to (EC6), and then (Section 3)
list and motivate some alternatives. When describing these, possible substitutes
for (for example) axiom (EC1) are labeled (EC1a), (EC1b), etc.

A central feature of the Event Calculi presented here are that they are
narrative-based, i.e. a time structure which is independent of any action oc-
currences is established or assumed, and then statements about when various
actions occur within this structure are incorporated in the description of the
domain under consideration. The time structure is usually assumed or stated to
be linear – typically the real or integer number line – although the underlying
ideas can equally be applied to other (possibly branching) temporal structures.
For the purposes of simplicity, unless otherwise stated we will assume in this
article that time is represented either by the real numbers, the integers, the
non-negative reals or the non-negative integers, and that appropriate axioms are
included in the theory which establish one of these time structures.

Sections 2 and 3 of this article are mostly taken from [43].

2 A Classical Logic Event Calculus Axiomatisation

Informally, the basic idea of the Event Calculus is to state that fluents (time-
varying properties of the world) are true at particular time-points if they have
been initiated by an action occurrence at some earlier time-point, and not termi-
nated by another action occurrence in the meantime. Similarly, a fluent is false
at a particular time-point if it has been previously terminated and not initiated
in the meantime. Domain dependent axioms are provided to describe which ac-
tions initiate and terminate which fluents under various circumstances, and to
state which actions occur when. In the context of the Event Calculus, individual
action occurrences are often referred to as “events”, so that “actions” are “event
types”.

The Event Calculus given here is written in a sorted predicate calculus with
equality, with a sort A for actions (variables a, a1, a2, . . .), a sort F for flu-

ents (variables f, f1, f2, . . .), a sort T for timepoints (here either real numbers
or integers, variables t, t1, t2, . . .) and a sort X for domain objects (variables
x, x1, x2, . . .). To describe a very basic calculus we need five predicates (other
than equality); Happens ⊆ A × T , HoldsAt ⊆ F × T , Initiates ⊆ A × F × T ,
Terminates ⊆ A×F ×T and < ⊆ T ×T . Happens(A, T) indicates that action
A occurs at time T , HoldsAt(F, T) means that fluent F is true at time T , and
Initiates(A,F, T) (respectively Terminates(A,F, T)) expresses that if A occurs
at T it will initiate (respectively terminate) the fluent F . “<” is the standard
order relation for time.

It is convenient to also define auxiliary predicates Clipped ⊆ T ×F ×T and
Declipped ⊆ T × F × T in terms of Happens, Initiates, Terminates, and <.
Clipped(T1, F, T2) (respectively Declipped(T1, F, T2)) means “the fluent F is ter-
minated (respectively initiated) between times T1 and T2.” The corresponding
definitional axioms1 are

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC1)

∧ Terminates(a, f, t)]

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC2)

∧ Initiates(a, f, t)]

We can now axiomatise the two principles stated in the introduction to
this section. Fluents which have been initiated by an occurrence of an action
continue to hold until an occurrence of an action which terminates them

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3)
∧ t1 <t2 ∧ ¬Clipped(t1, f, t2)]

and fluents which have been terminated by an occurrence of an action continue
not to hold until an occurrence of an action which initiates them:

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4)
∧ t1 <t2 ∧ ¬Declipped(t1, f, t2)]

The four axioms above capture the behaviour of fluents once initiated or
terminated by an action. But we need also to describe fluents’ behaviour before
the occurrence of any actions which affect them. We therefore axiomatise a
general principle of persistence for fluents; fluents change their truth values only
via the occurrence of initiating and terminating actions:

HoldsAt(f, t2) ← [HoldsAt(f, t1) ∧ t1 <t2 (EC5)
∧ ¬Clipped(t1, f, t2)]

1 By E1
def≡ E2 we mean that expression E1 is notational shorthand for expression E2.

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) ∧ t1 <t2 (EC6)
∧ ¬Declipped(t1, f, t2)]

Definitions of the predicates Happens, Initiates and Terminates are given in
the domain-dependent part of the theory, as illustrated in the following example.

2.1 An Example Domain Dependent Axiomatisation

As an example domain dependent theory, we axiomatise a simple scenario
of a robot going outside a room by moving through a door, which can be
locked and unlocked using an electronic key. For this example we will assume
a real number time-line. We will use three fluents, Inside (the robot is inside
the room), HasKey (the robot is holding the electronic key), and Locked
(the door is locked), and three actions, Insert (insert the key in the door),
GoThrough (move through the door), and Pickup (pick up the key). We assume
uniqueness-of-names axioms2 which confirm that all of these constant symbols
refer to distinct fluents or actions. Inserting the key alternately locks and
unlocks the door. Picking up the key causes the robot to be holding the key,
and, going through the unlocked door causes the robot to swap from being
inside to outside or vice-versa. We use the predicates Initiates and Terminates
to express these effects:

Initiates(a, f, t) ≡ [[a=Pickup ∧ f =HasKey] (R1)
∨ [a=Insert ∧ f =Locked

∧ ¬HoldsAt(Locked , t)
∧ HoldsAt(HasKey , t)]

∨ [a=GoThrough ∧ f =Inside
∧ ¬HoldsAt(Locked , t)
∧ ¬HoldsAt(Inside, t)]]

Terminates(a, f, t) ≡ [[a=GoThrough ∧ f =Inside (R2)
∧ ¬HoldsAt(Locked , t)
∧ HoldsAt(Inside, t)]

∨ [a=Insert ∧ f =Locked
∧ HoldsAt(Locked , t)
∧ HoldsAt(HasKey , t)]]

2 In this case the collection of uniqueness-of-names axioms will consist of a sentence
such as Inside 6=HasKey for each pair of fluent names and action names. In domains
where parameterised fluents or actions are used, e.g. a Lower(x) action to represent
the act of lowering an object x meters, it might also typically include sentences such
as Lower(x1) = Lower(x2) → x1 = x2. The inclusion of such uniqueness-of-names
axioms is not obligatory (we might for example wish to deliberately use two names
to refer to the same action), but their omission will generally lead to unexpected
results.

Let us suppose that the door is locked and the robot is inside at time 0, and
that the robot picks up the key, unlocks the door and goes through the door at
times 2, 4 and 6 respectively:

HoldsAt(Locked , 0) ∧ HoldsAt(Inside, 0) (R3)

Happens(a, t) ≡ [[a=Pickup ∧ t=2] ∨ (R4)
[a=Insert ∧ t=4] ∨
[a=GoThrough ∧ t=6]]

The reader is invited to check that from (EC1)-(EC6) and (R1)-(R4), together
with uniqueness-of-names axioms for fluents and actions and an appropriate
axiomatisation of the real numbers, it is for example possible to deduce that the
robot is no longer inside the room at time 8, i.e. ¬HoldsAt(Inside, 8).

2.2 Circumscription and the Frame Problem

In Event Calculus terms, the frame problem is the problem of expressing in a
succinct and elaboration tolerant way that in most cases a given action will
not initiate or terminate a given fluent. The description of which actions ini-
tiate and terminate which fluents via single biconditionals (as in axioms (R1)
and (R2) above), although succinct, is rather unsatisfactory from the point of
view of elaboration tolerance. For example, if new information about the ini-
tiating effects of a new action needs to be included in the robot domain (e.g.
Initiates(PressDoorBell ,RingingNoise, t)) this cannot be simply added to the
theory, since it would be inconsistent with axiom (R1) (from which it is possible
to infer ¬Initiates(PressDoorBell ,RingingNoise, t)).

Hence most versions of the Event Calculus describe each fact or rule about
initiation and termination in a separate axiom or clause, and provide an
extra transformation or non-monotonic reasoning method to infer negative
information about Initiates and Terminates from the collection of such rules.
In the context of our classical logic Event Calculus and robot example, the
individual rules would be

Initiates(Pickup,HasKey , t) (R5)

Initiates(Insert ,Locked , t) ← (R6)
[¬HoldsAt(Locked , t) ∧HoldsAt(HasKey , t)]

Initiates(GoThrough, Inside, t) ← (R7)
[¬HoldsAt(Locked , t) ∧ ¬HoldsAt(Inside, t)]

Terminates(GoThrough, Inside, t) ← (R8)
[¬HoldsAt(Locked , t) ∧HoldsAt(Inside, t)]

Terminates(Insert ,Locked , t) ← (R9)
[HoldsAt(Locked , t) ∧HoldsAt(HasKey , t)]

Predicate completion or circumscription [39] can then be used to transform this
collection of axioms into expressions such as (R1) and (R2). In this article we
use the notation described in [37] to indicate circumscriptions of particular con-
junctions of sentences. In particular, the circumscription

CIRC [(R5) ∧ (R6) ∧ (R7) ∧ (R8) ∧ (R9) ; Initiates,Terminates]

yields exactly (R1) and (R2). For simple domains such as the above, this type
of transformation (whether described in terms of circumscription or predicate
completion) is analogous to the solution to the frame problem developed by
Reiter for the Situation Calculus [50].

To make useful deductions using axioms (EC1)-(EC6), it is also necessary
to be able to infer both positive and negative information about Happens
from the domain dependent part of the theory. Again the issue of elaboration
tolerance arises, so that, as for Initiates and Terminates, most versions of the
Event Calculus encapsulate each individual action occurrence in a separate
Happens assertion (rather than using a biconditional such as (R4)), and then
use some form of non-monotonic reasoning to infer negative information about
this predicate. For example, in the case of our robot example the assertions
would be

Happens(Pickup, 2) (R10)

Happens(Insert , 4) (R11)

Happens(GoThrough, 6) (R12)

The circumscription CIRC [(R10) ∧ (R11) ∧ (R12) ; Happens] then gives (R4).
If we now wish to add more information about Happens, we can do so

without altering axioms (R10)-(R12) and then reapply the circumscription
operator. This information need not just be in the form of ground literals
– we may have less precise information about the order or timing of action
occurrences. For example, we might know that the robot pressed the door bell
either just before, just after or at the same time as inserting the key, in which
case we could add

∃t1.[Happens(PressDoorBell , t1) ∧ 2< t1 < 6] (R13)

The circumscription CIRC [(R10)∧ (R11)∧ (R12)∧ (R13) ; Happens] then gives

∃t1.[2< t1 < 6 ∧ [Happens(a, t) ≡ (R14)
[[a=Pickup ∧ t=2] ∨
[a=Insert ∧ t=4] ∨
[a=GoThrough ∧ t=6] ∨
[a=PressDoorBell ∧ t= t1]]]]

enabling us to deduce facts such as ¬HoldsAt(Inside, 8) as before.
More generally, complete Event Calculus domain descriptions of this basic

type are of the form

CIRC [Σ ; Initiates,Terminates] ∧ CIRC [∆ ; Happens] ∧ Ω ∧ EC

where Σ is a conjunction of Initiates and Terminates formulae, ∆ is a conjunc-
tion of Happens and temporal ordering formulae, Ω is a conjunction of fluent-
specific HoldsAt formulae such as (R3) and time-independent formulae (such as
uniqueness-of-names axioms for actions and fluents), and EC is the conjunction
of axioms (EC1) to (EC6) together an appropriate axiomatisation of the sort
T . The minimisation of Initiates and Terminates corresponds to the default
assumption that actions have no unexpected effects, and the minimisation of
Happens corresponds to the default assumption that there are no unexpected
event occurrences. The key to this solution to the frame problem is thus the
splitting of the theory into different parts, which are circumscribed separately.
This technique, sometimes referred to as forced separation, is also employed in
[9], [14] and [28], and is akin to what Sandewall calls filtering [56].

2.3 Narrative Information and Planning

In some circumstances it is convenient to define Happens in terms of other
predicates representing different categories of action occurrence. For example,
in the context of planning we may wish to distinguish between actions that
have (definitely) happened in the past and actions that the agent will (possibly)
perform in the future3. In this case we may include a domain independent
axiom such as

Happens(a, t) ≡ [Occurred(a, t) ∨ Perform(a, t)] (EC7)

We can now maintain a complete definition for Occurred (in the same way that
we previously had a complete definition for Happens) based on our knowledge
of actions that have already taken place, whilst keeping Perform undefined
within the theory. In this way we can formulate a deductive specification of the
planning task in terms of Perform. For example, in the context of the robot
example suppose that at time 3 we know that a Pickup action has already taken
place (at time 2), and wish to plan for the goal ¬HoldsAt(Inside, 8). We would

3 Or we may wish to distinguish between actions performed by the agent and events
occurring in the environment and outside the agent’s control.

include the axiom

Occurred(a, t) ≡ [a=Pickup ∧ t=2] (R15)

(or the equivalent expression CIRC [Occurred(Pickup, 2) ; Occurred]) in the
domain description, and then show that the sentence

Perform(a, t) ≡ [[a=Insert ∧ t=4] ∨ [a=GoThrough ∧ t=6]] (P1)

is a plan for ¬HoldsAt(Inside, 8) in the sense that

[(EC1) ∧ . . . ∧ (EC7) ∧ (R1) ∧ (R2) ∧ (R3) ∧ (R15)] |=
[(P1) → ¬HoldsAt(Inside, 8)]

More generally, planning can be viewed as the deduction4 of sentences of the
form [Plan → Goal] from an Event Calculus domain description, where Plan is
a sentence such as (P1) defining the predicate Perform, and Goal is a sentence
containing just the predicates HoldsAt and < (we need also to establish via
general theorems or a specific check that Plan is consistent with the Event
Calculus theory). By the Deduction Theorem (see e.g. [18]) Theory |= [Plan →
Goal] is equivalent to [Theory ∧ Plan] |= Goal so that planning in the context
of the Event Calculus can also be understood in terms of abduction (i.e. finding
plans to add to the theory so that the goal is entailed). Indeed, it is this abductive
view which is taken in the majority of work on Event Calculus planning, e.g. in
[15], [8], [19], [44], [45], [63], [65] and [20].

2.4 Non-determinism

In contrast to many versions of the Event Calculus, the axiomatisation described
in (EC1)–(EC6) is non-deterministic, in the sense that simultaneously initiating
and terminating a fluent simply gives rise to two sets of models (one in which
the fluent is true immediately afterwards and one in which it is false), rather
than resulting in an inconsistent theory. This is because of the requirement in
axioms (EC1) and (EC2) that t1≤ t, rather than t1 <t.

For example, let us suppose that the action of tossing a coin is represented
as TossCoin, and that each occurrence of this action results in the fluent
HeadsUp being either true or false. We can represent this with an Initiates and
a Terminates literal:

Initiates(TossCoin,HeadsUp, t) (C1)

Terminates(TossCoin,HeadsUp, t) (C2)

4 That is to say, planning can be specified as a deductive task. We do not wish to claim
that general purpose classical theorem provers are practical as planning systems.

Suppose the time is represented as the reals, and that a single TossCoin action
happens at time 2:

Happens(TossCoin, 2) (C3)

The theory which consists of axioms (EC1)-(EC6), CIRC [(C1) ∧
(C2) ; Initiates,Terminates] and CIRC [(C3) ; Happens] has four classes
of models with respect to the fluent HeadsUp – one in which HeadsUp holds
for all timepoints, one in which HeadsUp holds for no timepoints, one in which
HeadsUp changes from true to false for all timepoints greater than 2, and one in
which HeadsUp changes from false to true for all timepoints greater than 2. This
is because using axioms (EC1) and (EC2) we can show Clipped(2,HeadsUp, T)
and Declipped(2,HeadsUp, T) for all T > 2, so that (EC3) and (EC4) are
trivially satisfied and the truth value of HeadsUp at different timepoints is
constrained only by axioms (EC5) and (EC6).

The narrative-based nature of the Event Calculus (i.e. the fact that action
occurrences are explicitly represented) facilitates a simple alternative to repre-
senting non-determinism. We can for example regard the action TossCoin as
representing a choice of two deterministic actions TossHead and TossTail :

Happens(TossCoin, t) → (C4)
[Happens(TossHead , t) ∨ Happens(TossTail , t)]

We can then rewrite axioms (C1) and (C2) as

Initiates(TossHead ,HeadsUp, t) (C1a)

Terminates(TossTail ,HeadsUp, t) (C2a)

The theory consisting of (EC1)-(EC6), (C5), CIRC [(C3)∧ (C4) ; Happens] and
CIRC [(C1a) ∧ (C2a) ; Initiates,Terminates] now also gives rise to the desired
classes of models described above. (The circumscription of Happens eliminates
models where both a TossHead and a TossTail action occur at time 2.) For tasks
such as planning, it is straightforward to specify that the agent in question can
attempt some actions (such as TossCoin) but not others (such as TossHead or
TossTail).

2.5 Concurrent Actions

The syntax of the Event Calculus makes it straightforward to express that two or
more actions have occurred or will occur simultaneously, since different Happens
literals in the domain description may refer to the same timepoint.

In some domains, concurrently performed actions may cancel each others’
effects, and may combine to cause effects which none of the actions performed
in isolation would achieve. A standard example is that if a bowl is filled with
water, lifting just the left side of the bowl or just the right side will cause the

water to spill. Lifting both sides simultaneously will not cause the water to spill
but will cause the bowl to be raised.

In the Event Calculus, we can describe cancellations and combinations of
effects with Happens preconditions in the domain dependent axioms defining
Initiates and Terminates. For example:

Initiates(LiftLeft ,Spilt , t) ← ¬Happens(LiftRight , t) (B1)

Initiates(LiftRight ,Spilt , t) ← ¬Happens(LiftLeft , t) (B2)

Initiates(LiftRight ,Raised , t) ← Happens(LiftLeft , t) (B3)

To illustrate the effect of such statements, suppose that our domain description
also includes the following narrative information:

¬HoldsAt(Spilt , 0) (B4)

Happens(LiftLeft , 2) (B5)

Happens(LiftRight , 2) (B6)

The theory consisting of (EC1)-(EC6), (B4), CIRC [(B1) ∧ (B2) ∧
(B3) ; Initiates,Terminates] and CIRC [(B5) ∧ (B6) ; Happens] entails,
for example, both ¬HoldsAt(Spilt , 4) and HoldsAt(Raised , 4).

3 Alternative and Extended Classical Logic Event
Calculus Axiomatisations

The version of the Event Calculus described in Section 2 has a number of char-
acteristics; it is geared to time-lines extending infinitely backwards as well as
forwards, it is “non-deterministic” (in the sense described in Section 2.4), it re-
gards all actions as possible under all circumstances, it regards all fluents’ truth
values as persisting between all relevant action occurrences, and it regards all
action occurrences as instantaneous. However, the choice of which of these char-
acteristics to include in a given Event Calculus axiomatisation is to a large extent
arbitrary, and in this section we describe alternative axiomatisations which each
negate one or more of these properties.

For ease of presentation, sub-sections 3.1 to 3.7 below each alter the axioma-
tisation (EC1)–(EC6) as little as possible to illustrate the particular point under
discussion. But unless otherwise stated these alterations can be combined in a
straightforward and obvious manner. For example we can combine the modifica-
tions described in sub-sections 3.2, 3.3 and 3.6 below to produce a “determinis-
tic” Event Calculus with facilities to describe when it is impossible for particular
actions to occur, and including actions of a non-zero duration.

Where in a particular sub-section no alternative to one of the axioms (EC1)–
(EC6) is given, it should be assumed that the axiom in question remains un-
changed.

3.1 An Alternative Axiomatisation for Non-Negative Time

Where time is modeled as the non-negative reals or integers, it is often
convenient to introduce two new predicates5 InitiallyP ⊆ F and InitiallyN ⊆ F
(“P” for “positive” and “N” for “negative”), and to replace axioms (EC5) and
(EC6) with the following three axioms:

HoldsAt(f, t) ← [InitiallyP(f) ∧ ¬Clipped(0, f, t)] (EC5a)

¬HoldsAt(f, t) ← [InitiallyN (f) ∧ ¬Declipped(0, f, t)] (EC6a)

InitiallyP(f) ∨ InitiallyN (f) (EC8a)

Indeed, for non-negative time (EC5a), (EC6a) and (EC8a) may be deduced from
(EC5) and (EC6) together with the assertion

[HoldsAt(f, 0) ≡ InitiallyP(f)] ∧ [¬HoldsAt(f, 0) ≡ InitiallyN (f)]

Axioms (EC5a) and (EC6a) have an advantage over (EC5) and (EC6) in that
they can readily be converted to logic program clauses without causing obvious
looping problems.

However, this alternative axiomatisation is slightly weaker. For example,
in the non-deterministic domain described in Sub-section 2.4 by axioms (C1),
(C2) and (C3), axioms (EC5a), (EC6a) and (EC8a) would license models where
HeadsUp fluctuated arbitrarily between true and false at times after 2. Although
this characteristic is problematic for this particular example, it can be an ad-
vantage for representing other types of domain where it is convenient to “dy-
namically manage the frame”, i.e. to regard some fluents as having an inherent
persistence during some intervals of time but not during others. Indeed, for such
domains axiom (EC8a) may not be appropriate. These issues are discussed in
more detail in Section 3.7.

Since this particular axiomatisation does not include the general principle
of persistence encapsulated in (EC5) and (EC6) (which describes how fluents
persist independently of initiating and terminating action occurrences), adding
individual HoldsAt literals to a given domain description (see for example axiom
(R3) in Section 2.1) no longer necessarily has the same effect, particularly in
axiomatisations where (EC8a) is omitted. Instead, individual observations of
the form HoldsAt(F, T) and ¬HoldsAt(F, T) can be assimilated indirectly into
the theory (perhaps automatically by a process of abduction) by appropriate
addition of Happens, InitiallyP and InitiallyN literals. Axiom (R3), for example,

5 These predicates are referred to as InitiallyTrue and InitiallyFalse in [42].

can be replaced by

InitiallyP(Locked) ∧ InitiallyP(Inside) (R3a)

so that (R3) is now entailed by the theory consisting of (R3a), (R1), (R2), (R4),
(EC1)–(EC4), (EC5a) and (EC6a).

3.2 Deterministic Event Calculus

A strictly deterministic Event Calculus (in the sense that simultaneously
initiating and terminating a fluent results in inconsistency) may be formulated
by replacing (EC3) and (EC4) by the following two axioms:

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3b)
∧ t1 <t2 ∧ ¬StoppedIn(t1, f, t2)]

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4b)
∧ t1 <t2 ∧ ¬StartedIn(t1, f, t2)]

where the predicates StoppedIn and StartedIn are defined as follows:

StoppedIn(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1 <t<t2 (EC9b)

∧ Terminates(a, f, t)]

StartedIn(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1 <t<t2 (EC10b)

∧ Initiates(a, f, t)]

Note that StoppedIn and StartedIn are identical to Clipped and Declipped except
for the inequality relations between the time-point variables. Strictly speak-
ing (EC1) and (EC2) defining Clipped and Declipped are still required since
these predicates are used in (EC5) and (EC6), or in their substitutes (EC5a)
and (EC6a). But for domains using non-negative time and axioms (EC5a) and
(EC6a), the definitions of Clipped and Declipped may be straightforwardly re-
placed by those for StoppedIn and StartedIn, provided no actions occur at time
0 which either terminate initially-positive fluents or initiate initially-negative
fluents.

The effective meanings of Initiates and Terminates are slightly different in
the deterministic Event Calculus (i.e. in axiomatisations including (EC3b) and
(EC4b)) from their meanings in non-deterministic Event Calculus. (EC3b) and
(EC4b) ensure that Initiates(A,F, T) can be read as “F holds immediately af-
ter an occurrence of A at time T”, whereas with axioms (EC3) and (EC4)
Initiates(A,F, T) corresponds to the slightly weaker assertion that “an occur-
rence of A at time T has an initiating influence on F” (which may or may not
be overridden by a simultaneously occurring terminating influence).

There are several ways in which non-determinism may be reintroduced into
what we have described here as deterministic Event Calculus. For example, the

technique exemplified in axioms (C1a), (C2a) and (C4) (see Section 2.4) is still
applicable. Other methods include the use of determining fluents or a Releases
predicate (see [62] and Section 3.7).

3.3 Action Preconditions and the Qualification Problem in the
Event Calculus

We have already illustrated with axioms such as (R6)-(R9) (See Section 2.2)
how preconditions for particular effects of actions may be expressed within
the Event Calculus. These types of precondition are often referred to as
fluent preconditions. There are also various ways in which action preconditions
(i.e. conditions necessary for actions to be possible at all) can be expressed.
One method is to introduce a new predicate Impossible ⊆ A × T and write
an appropriate definition for Impossible with respect to each action in the
domain in question. For instance, in our example domain we may wish to
express that it is impossible for the robot to pickup the key if it is not fit-
ted with a grabber, and it is impossible for the robot to go through a locked door:

Impossible(Pickup, t) ← ¬HoldsAt(HasGrabber , t) (R16)

Impossible(GoThrough, t) ← HoldsAt(Locked , t) (R17)

We can regard the qualification problem (at least in part) as the problem
of expressing, in a succinct and elaboration tolerant way, that under most
circumstances most actions are possible. To achieve this in the Event Calculus,
we can minimise the predicate Impossible. CIRC [(R16) ∧ (R17) ; Impossible]
gives

Impossible(a, t) ≡ [[a=Pickup ∧ ¬HoldsAt(HasGrabber , t)] (R18)
∨ [a=GoThrough ∧ HoldsAt(Locked , t)]]

For narrative formalisms such as the Event Calculus, the way in which this
type of knowledge is to be interpreted, and thus the way in which the domain in-
dependent axioms need to be adapted, depends to some extent on the individual
domain and mode of reasoning under consideration. For tasks such as planning,
which involves (hypothetical) reasoning about future events, it makes sense to
regard the assertion Impossible(A, T) as stating “it is impossible to predict the
effects of attempting to perform action A at time T” (so that ¬Impossible(A, T)
can be regarded as analogous to Poss(A,S) in Reiter’s Situation Calculus [50]).
In this case it is necessary only to block any inferences about what holds or does
not hold at any time after an (attempt at an) ‘impossible’ action occurrence. This
can be done by appropriately modifying the definitions of Clipped and Declipped :

Clipped(t1, f, t2)
def≡ (EC1c)

[∃a, t[Happens(a, t) ∧ t1≤ t<t2 ∧ Terminates(a, f, t)]
∨ ∃a, t[Happens(a, t) ∧ t<t2 ∧ Impossible(a, t)]]

Declipped(t1, f, t2)
def≡ (EC2c)

[∃a, t[Happens(a, t) ∧ t1≤ t<t2 ∧ Initiates(a, f, t)]
∨ ∃a, t[Happens(a, t) ∧ t<t2 ∧ Impossible(a, t)]]

On the other hand, if for example the domain includes certain knowledge
about actions or events that have actually occurred in the past, it makes
sense to regard the assertion Impossible(A, T) as stating “action A could
not have occurred at time T”. Hence where the definition of Happens is split
as in axiom (EC7) (see Section 2.3), we can include additional constraints such as

¬Occurred(a, t) ← Impossible(a, t) (EC11c)

Notice for example that from (R15), (R16) and (EC11c) we can infer the action
precondition HoldsAt(HasGrabber , 2) for the known occurrence of Pickup at
time 2. This illustrates why we would not want to include constraints analogous
to (EC11c) for hypothetical future performances of actions – at time 0 we would
not for example want Perform(Pickup, 1) to constitute a plan for the goal
HoldsAt(HasGrabber , 1). We could however safely state that nothing happens
when an agent attempts to perform an impossible action, by replacing (EC7)
with

Happens(a, t) ≡ [[Perform(a, t) ∧ ¬Impossible(a, t)] (EC7c)
∨ Occurred(a, t)]

Finally, note that rules such as (R16) and (R17) partially defining Impossible
can have Happens (and Perform and Occurred) preconditions as well as HoldsAt
preconditions. This can be useful, for example, for expressing that it is impossible
to perform certain combinations of actions simultaneously. For instance, the
sentence

Impossible(a1, t) ← [Perform(a2, t) ∧ a1 6=a2]

states that it is in general impossible to perform more than one action at a time.
Like (R16) and (R17), such sentences must be placed within the scope of the
circumscription of Impossible.

3.4 Categorisation of Fluents in the Event Calculus

For some domains, it is appropriate to categorise fluents into frame fluents and
non-frame fluents (or primitive and derived fluents), and then to restrict the
application of the principles of persistence encapsulated in axioms (EC3)-(EC6)
to frame fluents only. To do this it is necessary to introduce a new predicate

Frame ⊆ F , and alter (EC3)-(EC6) as follows:

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3d)
∧ Frame(f) ∧ t1 <t2
∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4d)
∧ Frame(f) ∧ t1 <t2
∧ ¬Declipped(t1, f, t2)]

HoldsAt(f, t2) ← [HoldsAt(f, t1) ∧ t1 <t2 (EC5d)
∧ Frame(f) ∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) ∧ t1 <t2 (EC6d)
∧ Frame(f) ∧ ¬Declipped(t1, f, t2)]

This axiom set can be useful when we want to include simple types of indirect
effects in domain descriptions, since we are now free to write definitions or
partial definitions of non-frame fluents (i.e. state constraints) in terms of
HoldsAt and frame fluents. For example, as regards the robot we may wish to
introduce a non-frame fluent Happy and state that, although the robot is not
happy at time 0, it is in general happy if it is holding the key:

Frame(f) ≡ [f =Inside ∨ f =HasKey ∨ f =Locked] (R19)

¬HoldsAt(Happy , 0) (R20)

HoldsAt(Happy , t) ← HoldsAt(HasKey , t) (R21)

Using (EC1), (EC2), (EC3d)-(EC6d), (R1)-(R4) and (R19)-(R21) we can
now, for example, infer HoldsAt(Happy , 5). Indeed, we can also infer
¬HoldsAt(HasKey , 0) and therefore ¬HoldsAt(HasKey , 1). But we can neither
infer HoldsAt(Happy , 1) nor ¬HoldsAt(Happy , 1), since the non-frame fluent
Happy has no intrinsic persistence of its own.

3.5 Trajectories, Delayed Actions and Gradual Change

Several techniques are available within the context of the Event Calculus for
describing delayed effects. The simplest approach is to write rules in terms of
Happens. For example, if setting an alarm clock causes it to ring 8 hours later,
we can write

Happens(StartRing , t+8) ← Happens(Set , t) (A1)

Initiates(StartRing ,Ringing , t) (A2)

A disadvantage of rules such as (A1) is that it is difficult to express that the
occurrence of the later action might be prevented by some intervening action
(e.g. somebody might switch off the alarm during the night).

A more flexible approach involves the use of trajectories [58]. It is convenient
to illustrate this technique here by introducing a new sort P of parameters into
the language. Like fluents, parameters are time-varying properties, but unlike
(frame) fluents they have no associated default persistence. More precisely,
parameters are names for arbitrarily-valued functions of time, and accordingly
we introduce a new function ValueAt : P × T 7→ X . For example, we might
write ValueAt(Countdown, 5) = 2 to indicate that at time 5 the parameter
Countdown, representing the time remaining before the alarm clock rings, has a
value of 2. To represent delayed and triggered effects, as well as simple forms of
gradual or continuous change, specific parameters are associated with specific
fluents via the predicate Trajectory ⊆ F × T × P × T × X . The intended
meaning of Trajectory(F, T1, P, T2, X) is that if fluent F is initiated at time T1

and continues to hold until time T1+T2, this results in parameter P having a
value of X at time T1+T2. For example, in the case of the alarm clock we might
write

Trajectory(SwitchedOn, t1,Countdown, t2, 8−t2) (A3)

We can translate this intended meaning into Event Calculus terms with the
addition of a single extra domain independent axiom

ValueAt(p, t1+t2)=x ← (EC11)
[Happens(a, t1) ∧ Initiates(a, f, t1)
∧ 0<t2 ∧ Trajectory(f, t1, p, t2, x)
∧ ¬Clipped(t1, f, t1+t2)]

Continuing with our example, it is straightforward to express that when
Countdown reaches 0 the alarm goes off:

Happens(StartRing , t) ← ValueAt(Countdown, t)=0 (A4)

We can complete our description of the domain by stating that switching on the
alarm activates the timing mechanism (provided it is not already activated),
that the ringing event switches off the timing mechanism, that when the timing
mechanism is switched off the countdown is permanently fixed at 8, that the
alarm is initially not switched on and that someone switches it on at time 2:

Initiates(Set ,SwitchedOn, t) ← ¬HoldsAt(SwitchedOn, t) (A5)

Terminates(StartRing ,SwitchedOn, t) (A6)

ValueAt(Countdown, t)=8 ← ¬HoldsAt(SwitchedOn, t) (A7)

¬HoldsAt(SwitchedOn, 0) (A8)

Happens(Set , 2) (A9)

The theory consisting of (EC1)-(EC6), (EC11), (A3), (A7), (A8), CIRC [(A4)∧
(A9) ; Happens] and CIRC [(A2) ∧ (A5) ∧ (A6) ; Initiates,Terminates] entails,
for example, Happens(StartRing , 10) and HoldsAt(Ringing , 11).

The Event Calculus is symmetric as regards positive and negative HoldsAt
literals and as regards Initiates and Terminates. Hence (EC11) has its counter-
part in terms of Terminates:

ValueAt(p, t1+t2)=x ← (EC12)
[Happens(a, t1) ∧ Terminates(a, f, t1)
∧ 0<t2 ∧ AntiTrajectory(f, t1, p, t2, x)
∧ ¬Declipped(t1, f, t1+t2)]

This axiom uses the predicate AntiTrajectory ⊆ F × T × P × T × X . The
intended meaning of AntiTrajectory(F, T1, P, T2, X) is that if fluent F is
terminated at time T1 and continues not to hold until time T1+T2, this results
in parameter P having a value of X at time T1+T2. We can illustrate the use of
anti-trajectories by representing the fact that a hot-air balloon rises when the
air-heater is on, but falls when it is not:

Trajectory(HeaterOn, t1,Height , t2, x1+t2) (H1)
← ValueAt(Height , t1)=x1

AntiTrajectory(HeaterOn, t1,Height , t2, x1−t2) (H2)
← ValueAt(Height , t1)=x1

(Note that in the alarm clock example (A7) can also be expressed as
AntiTrajectory(SwitchedOn, t1,Countdown, t2, 8).)

Note that the functions captured in individual trajectories need not be
continuous or even numerically valued. For example, we can use a trajectory
to model the fact that the left indicator light of a car flashes once per second
while the indicator switch is depressed:

Trajectory(IndicatorDepressed , t1,Light , t2,BlinkFunction(t2)) (L1)

AntiTrajectory(IndicatorDepressed , t1,Light , t2,Off) (L2)

BlinkFunction(t)=On ← [t mod 2 < 1] (L3)

BlinkFunction(t)=Off ← [t mod 2 ≥ 1] (L4)

In domains which include non-deterministic actions (in the sense that
actions or combinations of actions can simultaneously initiate and terminate

fluents) axioms (EC11) and (EC12) are too weak. For example, if the switching
on mechanism is faulty in our alarm clock example, so that we have both (A5)
and

Terminates(Set ,SwitchedOn, t) (A10e)

axiom (EC11) will not inform us that the countdown is activated even in the
circumstance where fluent SwitchedOn holds immediately after time 2. One
solution is to replace (EC11) and (EC12) with equivalent axioms which have
an extra HoldsAt condition in their right-hand sides, but use StoppedIn and
StartedIn (see axioms (EC9b) and (EC10b)) instead of Clipped and Declipped :

ValueAt(p, t1+t2)=x ← (EC11e)
[Happens(a, t1) ∧ Initiates(a, f, t1)
∧ 0<t2 ∧ Trajectory(f, t1, p, t2, x)
∧ HoldsAt(f, t1+t2) ∧ ¬StoppedIn(t1, f, t1+t2)]

ValueAt(p, t1+t2)=x ← (EC12e)
[Happens(a, t1) ∧ Terminates(a, f, t1)
∧ 0<t2 ∧ AntiTrajectory(f, t1, p, t2, x)
∧ ¬HoldsAt(f, t1+t2) ∧ ¬StartedIn(t1, f, t1+t2)]

In Event Calculus axiomatisations where a distinction is made between
fluents which are (temporarily or permanently) inside or outside the frame
(such as in Section 3.4), we may dispense with the extra sort P in favour of
non-frame fluents, and replace (EC11) and (EC12) with axioms such as

HoldsAt(f2, t1+t2) ← [¬Frame(f2) ∧ Happens(a, t1) (EC11f)
∧ Initiates(a, f1, t1) ∧ 0<t2
∧ Trajectory(f1, t1, f2, t2)
∧ ¬Clipped(t1, f1, t1+t2)]

HoldsAt(f2, t1+t2) ← [¬Frame(f2) ∧ Happens(a, t1) (EC12f)
∧ Terminates(a, f1, t1) ∧ 0<t2
∧ AntiTrajectory(f1, t1, f2, t2)
∧ ¬Declipped(t1, f1, t1+t2)]

Here Trajectory ⊆ F × T × F × T , and the intended meaning of
Trajectory(F1, T1, F2, T2) is that if fluent F1 is initiated at time T1 and
continues to hold until time T1+T2, this results in F2 holding at time T1+T2

(similarly for AntiTrajectory). In the alarm clock example Countdown would
then be parameterised, (A3), (A4) and (A6) would be written

Trajectory(SwitchedOn, t1,Countdown(8−t2), t2) (A3f)

Happens(StartRing , t) ← HoldsAt(Countdown(0), t) (A4f)

HoldsAt(Countdown(8), t) ← ¬HoldsAt(SwitchedOn, t) (A7f)

and the domain description would include the additional constraint

[HoldsAt(Countdown(x1), t) ∧ HoldsAt(Countdown(x2), t)] (A10f)
→ x1 =x2

3.6 The Event Calculus and Actions with Duration

The Event Calculus can be modified in various ways so that actions can be
represented as occurring over intervals of time. To illustrate, we present here
a simple modification in which actions are assigned a numerical duration using
the function Dur : A 7→ T . This avoids the need to introduce extra arguments
of sort T in the predicates Happens, Initiates and Terminates. For example, we
will interpret the assertion Happens(A, T) to mean “the action A starts to occur
at T” (so that it finishes at T +Dur(A)).

We will be cautious in the assumptions we make about the effects of
actions. We will assume that actions may affect relevant fluents from the
moment they start, but the effects only become certain after the actions have
finished. Hence the values of affected fluents should be undetermined by the
axiomatisation during action occurrences. To incorporate these assumptions in
the domain independent axioms (EC1)-(EC6) it is necessary only to modify
the various inequality relations between the timepoint variables in (EC1)-(EC4):

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤(t+Dur(a)) (EC1g)
∧ t<t2 ∧ Terminates(a, f, t)]

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤(t+Dur(a)) (EC2g)
∧ t<t2 ∧ Initiates(a, f, t)]

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3g)
∧ (t1+Dur(a))<t2
∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4g)
∧ (t1+Dur(a))<t2
∧ ¬Declipped(t1, f, t2)]

The issue of preconditions becomes more complex when actions have
duration. We may for example wish to make a distinction between preconditions
which must hold at the start of the action and those which must hold throughout
the action. It is therefore often convenient to define auxiliary predicates such as

HoldsIn ⊆ F × T × T :

HoldsIn(f, t1, t3)
def≡ ∀t2[t1≤ t2≤ t3 → HoldsAt(f, t2)] (EC13)

To illustrate the use of HoldsIn, consider a simple description of an automated
train which can move at a fixed speed S along a track running from West to
East, provided its motor is engaged. Using the action term MoveEast(T) to
represent the action of moving east for T time units, we can for example write
axioms such as

Dur(MoveEast(t))= t (T1)

Initiates(MoveEast(t),Location(x2), t1) ← (T2)
[HoldsAt(Location(x1), t1)
∧ x2 =(x1+S×Dur(MoveEast(t)))
∧ HoldsIn(MotorEngaged , t1, (t1+Dur(MoveEast(t))))]

An alternative way of dealing with actions with duration is to split them
into an (instantaneous) “start of action” (e.g. StartMoveEast), an “end of ac-
tion” (e.g. StopMoveEast) and introduce an extra fluent representing the fact
that the action is taking place (e.g. MovingEast). This approach is more eas-
ily integrated with the mechanisms described in Section 3.5 for dealing with
gradual change, and allows straightforward description of interruptions of partly
executed actions.

3.7 Dynamic Management of the Frame

We have already seen in Sections 3.4 and 3.5 how it can sometimes be advan-
tageous to regard some fluents (“frame” fluents) as having an intrinsic (default)
persistence, but regard other fluents as liable to change truth values between
action occurrences. It can also be useful to be able to express that particular
fluents have a default persistence during some intervals of time but not dur-
ing others. This can, for example, help succinctly describe domains involving
non-determinism, continuous change and indirect effects of actions (see [62] for
details). In this section we illustrate how this facility for “dynamic management
of the frame” can be incorporated into the Event Calculus by use of a new pred-
icate Releases ⊆ A×F ×T . A form of this predicate was first introduced in [28]
and it is related to Sandewall’s idea of occlusion [56].

Releases(A,F, T) expresses that if A occurs at T it will disable the fluent F ’s
innate persistence. The truth value of F will then be free to fluctuate until the
next action occurrence which initiates or terminates it. Releases is defined in the
domain-dependent part of the theory and circumscribed in parallel with Initiates
and Terminates. For example, in the alarm clock example of Section 3.5, we may
write

Releases(Set ,Countdown, t)

and if this is the only such statement in our theory, the circumscription will then
give

Releases(a, f, t) ≡ [a=Set ∧ f =Countdown]

Initiates(A,F, T) (respectively Terminates(A,F, T)) now expresses that if A
occurs at T it will both initiate (respectively terminate) the fluent F and enable
F ’s innate persistence. At any given time-point, therefore, a fluent can be in one
of four states – true and persisting, false and persisting, true and released or
false and released. To describe these states explicitly, we introduce a predicate
ReleasedAt ⊆ F × T analogous to HoldsAt . Finally we need two new auxiliary
predicates ReleasedBetween ⊆ T × F × T and PersistsBetween ⊆ T × F × T .
ReleasedBetween(T1, F, T2) means “an action releases the fluent F between times
T1 and T2” and PersistsBetween(T1, F, T2) means “the fluent is not in a state of
release at any time between T1 and T2.”

The Event Calculus described in (EC1)–(EC6) needs fairly radical mod-
ifications to incorporate these extra concepts and predicates. The modified
axiomatisation is as follows (for ease of reading (EC1) and (EC2) are listed
again, although they are unmodified). The first three axioms are all similar and
give definitions for Clipped , Declipped and ReleasedBetween:

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC1)

∧ Terminates(a, f, t)]

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t) ∧ t1≤ t<t2 (EC2)

∧ Initiates(a, f, t)]

ReleasedBetween(t1, f, t2)
def≡ (EC14h)

∃a, t[Happens(a, t) ∧ t1≤ t<t2
∧ Releases(a, f, t)]

The next four axioms indicate how particular actions can put a fluent in one of
the four states described above:

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3h)
∧ t1 <t2 ∧ ¬Clipped(t1, f, t2)
∧ ¬ReleasedBetween(t1, f, t2)]

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4h)
∧ t1 <t2 ∧ ¬Declipped(t1, f, t2)
∧ ¬ReleasedBetween(t1, f, t2)]

ReleasedAt(f, t2) ← [Happens(a, t1) ∧ Releases(a, f, t1) (EC15h)
∧ t1 <t2 ∧ ¬Clipped(t1, f, t2)
∧ ¬Declipped(t1, f, t2)]

¬ReleasedAt(f, t2) ← (EC16h)
[Happens(a, t1) ∧ t1 <t2
∧ [Initiates(a, f, t1) ∨ Terminates(a, f, t1)]
∧ ¬ReleasedBetween(t1, f, t2)]

A weakened version of the “commonsense law of inertia” is captured in the
following three axioms:

PersistsBetween(t1, f, t2)
def≡ (EC17h)
¬∃t[ReleasedAt(f, t) ∧ t1≤ t≤ t2]

HoldsAt(f, t2) ← [HoldsAt(f, t1) ∧ t1 <t2 (EC5h)
∧ PersistsBetween(t1, f, t2)
∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) ∧ t1 <t2 (EC6h)
∧ PersistsBetween(t1, f, t2)
∧ ¬Declipped(t1, f, t2)]

Finally, we need to state that the meta-property of being “released” is itself
subject to a form of meta-persistence between action occurrences:

ReleasedAt(f, t2) ← [ReleasedAt(f, t1) ∧ t1 <t2 (EC18h)
∧ ¬Clipped(t1, f, t2)
∧ ¬Declipped(t1, f, t2)]

¬ReleasedAt(f, t2) ← [¬ReleasedAt(f, t1) ∧ t1 <t2 (EC19h)
∧ ¬ReleasedBetween(t1, f, t2)]

Individual ReleasedAt literals can be included in the domain dependent part of
the theory in the same way as HoldsAt literals (see for example axiom (R3) in
Section 2.1).

The above axiomatisation is fairly complex – it replaces our original six
axioms with twelve (longer) ones and introduces four new predicates. However,
for practical and computational purposes (e.g. ease of translation into logic
programs) and where we are using non-negative time, we can dispense with
the predicates ReleasedAt , ReleasedBetween and PersistsBetween and simply
incorporate Releases in the definitions of Clipped and Declipped . This gives rise
to the following alternative (and complete) set of domain independent axioms:

Clipped(t1, f, t2)
def≡ (EC1i)

∃a, t[Happens(a, t) ∧ t1≤ t<t2
∧ [Terminates(a, f, t) ∨ Releases(a, f, t)]]

Declipped(t1, f, t2)
def≡ (EC2i)

∃a, t[Happens(a, t) ∧ t1≤ t<t2
∧ [Initiates(a, f, t) ∨ Releases(a, f, t)]]

HoldsAt(f, t2) ← [Happens(a, t1) ∧ Initiates(a, f, t1) (EC3)
∧ t1 <t2 ∧ ¬Clipped(t1, f, t2)]

¬HoldsAt(f, t2) ← [Happens(a, t1) ∧ Terminates(a, f, t1) (EC4)
∧ t1 <t2 ∧ ¬Declipped(t1, f, t2)]

HoldsAt(f, t) ← [InitiallyP(f) ∧ ¬Clipped(0, f, t)] (EC5a)

¬HoldsAt(f, t) ← [InitiallyN (f) ∧ ¬Declipped(0, f, t)] (EC6a)

Note that fluents which are InitiallyP or InitiallyN are initially in the frame,
whereas those which are neither InitiallyP nor InitiallyN are effectively initially
“released”. Hence axiom (EC8a) (see Section 3.1) implies that all fluents are
initially in the frame, and may or may not be appropriate for a given domain.

3.8 The Event Calculus, Continuous Change and Mathematical
Modelling

The techniques using the Trajectory and AntiTrajectory predicates discussed in
Section 3.5 are sufficient for modelling domains with very simple forms of con-
tinuous change, in particular where an explicit function of time is known for a
particular parameter after a particular fluent has been initiated or terminated.
However, this method is in general insufficient for integrating standard mathe-
matical modelling techniques with the Event Calculus, for several reasons. First,
the majority of mathematical models are expressed as sets of differential equa-
tions, and these cannot in general be solved so as to produce explicit functions of
time for each parameter involved. Second, there might only be incomplete knowl-
edge, expressed perhaps using inequalities, about the mathematical relationship
between various parameters and/or their derivatives. Third, the circumstances
under which various mathematical relationships hold between parameters might
not be (easily) expressible in terms of a single fluent. Fourth, trajectories and
antitrajectories do not provide mechanisms for describing continuous change in
time intervals before any relevant initiating and/or terminating actions have
occurred.

A more general approach is to include domain independent axioms which
explicitly utilise the mathematical definitions of continuity and differentiability
of real-valued functions of time. Under this approach, which is partly inspired by
Sandewall’s work [54, 55] and described in more detail in [42], continuity of real-
valued parameters is regarded as a default analogous to default persistence of
fluents, so that discontinuities arise only in particular parameters when specific
actions occur. For this section, we will assume that time is represented either

as the real numbers or as the non-negative real numbers. We will assume that
some or all terms of sort P (introduced in Section 3.5) represent real-valued
functions of time, and accordingly introduce two new function symbols V alue :
P×T 7→ R and δ : P 7→ P. The term Value(P, T) represents the numerical value
of parameter P at time T , and the axiomatisation below ensures that the term
Value(δ(P), T) represents the numerical value at time T of its first derivative
(at all time-points where this exists).

To integrate the standard mathematical concepts of continuity and differ-
entiability into the Event Calculus, we need to express them in terms of Value
and δ. It is also convenient to introduce the predicates LeftContinuous ⊆ P ×T
and RightLimit ⊆ P ×T to capture the corresponding (standard) mathematical
concepts6:

Continuous(p, t) ≡ ∀r∃t1∀t2[[|t− t2| < t1 ∧ 0 < r] (EC20j)
→ |Value(p, t)−Value(p, t2)| < r]

Differentiable(p, t) ≡ (EC21j)
∀r∃t1∀t2[[0 < |t− t2| < t1 ∧ 0 < r]→

|(Value(p,t)−Value(p,t2)
t−t2

)−Value(δ(p), t)| < r]

LeftContinuous(p, t) ≡ (EC22j)
∀r∃t1∀t2[[t2 < t ∧ (t− t2) < t1 ∧ 0 < r]→

|Value(p, t)−Value(p, t2)| < r]

RightLimit(p, t, r) ≡ (EC23j)
∀r1∃t1∀t2[[t < t2 ∧ (t2 − t) < t1 ∧ 0 < r1]

→ |Value(p, t2)− r| < r1]

To respect the convention that actions take effect immediately after they
occur, it is necessary to axiomatise the mathematical constraint that, at every
time-point (including those at which actions occur), the function associated
with each parameter is left-hand continuous:

LeftContinuous(p, t) (EC24j)

To describe instantaneous changes in the values of parameters at times when
actions occur, and discontinuities in their corresponding functions of time, the
predicates BreaksTo ⊆ A×P ×T ×R and Breaks ⊆ A×P ×T are introduced.

6 A function is left-continuous if discontinuities occur only between successive intervals
where the first is closed on the right and the second is open on the left. For example
the function f(t) = 0 for all t ≤ 1, f(t) = 2 otherwise, is left-continuous at all
time-points, whereas the function f ′(t) = 0 for all t < 1, f ′(t) = 2 otherwise, is not.
The right-limit of a function at a particular point is the limit value as the point is
approached from the right. So, for example, the right-limit of both f and f ′ at 1 is
2.

Both are minimised (by circumscribing them in parallel). BreaksTo(A,P, T, R)
should be read as ‘at time T , an occurrence of action A will cause parameter P
to instantaneously take on value R’. More precisely, Axiom (EC27j) below states
that if A does indeed occur at time T , then R is the value of the right-hand
limit of P at T . Breaks(A,P, T) can be read as ‘at time T , action A potentially
causes a discontinuity in parameter P ’. The following domain-independent
axioms make direct use of BreaksTo and Breaks. Axioms (EC25j) and (EC26j)
can be likened to ‘frame axioms’ for parameters. Axiom (EC28j) states the
relationship between BreaksTo and Breaks, and Axiom (EC29j) states that if an
action potentially causes a discontinuity in a given parameter, it also potentially
causes discontinuities in its higher derivatives.

¬[Happens(a, t) ∧ Breaks(a, p, t)]→ Continuous(p, t) (EC25j)

¬[Happens(a, t) ∧ Breaks(a, δ(p), t)]→ Differentiable(p, t) (EC26j)

[BreaksTo(a, p, t, r) ∧Happens(a, t)]→ RightLimit(p, t, r) (EC27j)

BreaksTo(a, p, t, r)→ Breaks(a, p, t) (EC28j)

Breaks(a, p, t)→ Breaks(a, δ(p), t) (EC29j)

To make useful derivations using this axiomatisation, for any given time point
T it is useful to be able to refer to the next point after T at which an action
occurs, if there is such a point. Axioms (EC30j), (EC31j) and (EC32j) state
that if any action occurs at any time point after T , then the term Next(T)
refers to the least such time point. (Such points are somewhat analogous to the
“least natural time points” discussed in [51].)

t<Next(t) (EC30j)

[t<t1 ∧ t1 <Next(t)] → ¬Happens(a, t1) (EC31j)

[Happens(a1, t1) ∧ t<t1] → ∃a.Happens(a,Next(t)) (EC32j)

The above axiomatisation leaves us free to include (unsolved) sets of simul-
taneous differential equations in domain descriptions. As a simple illustration,
suppose we wish to represent that the rate of change of the level of liquid in
a tank is negatively proportional to the flow through a valve in its bottom,
and that when the valve is open the flow is in turn proportional to the level
(i.e. pressure). We need a single fluent ValveOpen, two parameters Level and
Flow , and actions OpenValve and CloseValve. As well as Happens, Initiates
and Terminates facts such as

Initiates(OpenValve,ValveOpen, t) (V1)

Terminates(CloseValve,ValveOpen, t) (V2)

we can represent information about the instantaneous effects of actions on
parameters using Breaks,

Breaks(OpenValve,Flow , t) (V3)

Breaks(OpenValve, δ(Level), t) (V4)

and include mathematical constraints (differential equations) which hold in
different circumstances, e.g.

Value(δ(Level), t) = −Value(Flow , t) (V5)

HoldsAt(ValveOpen, t)→ ∃r[Value(Flow , t) = r.Value(Level , t)] (V6)

In this case the full theory will include the circumscription CIRC [(EC28j) ∧
(EC29j) ∧ (V3) ∧ (V4) ; Breaks,BreaksTo]. The Event Calculus now allows us
to infer new boundary conditions for sets of differential equations which become
applicable when actions such as OpenValve and CloseValve occur. A variation
of this example is discussed in more detail in [42].

The above axiomatisation lays a foundation for integrating the Event Calcu-
lus with representational and computational techniques from the field of Qual-
itative Reasoning [9] [34]. An Event Calculus based axiomatisation of some of
the basic concepts in [34] is given in [42].

3.9 Other Issues and Extensions

Space limitations forbid a detailed summary of all work done on extending the
classical logic Event Calculus in this article. In particular, three important top-
ics we have not covered are hierarchical actions, ramifications, and knowledge
producing actions.

Hierarchical or compound actions are non-instantaneous actions whose oc-
currence consists of the occurrence of a set of shorter actions. (For example,
the “go to work” action might comprise a “walk to the station” action, a “get
the train” action and a “walk to the office” action.) These can be formalised
in the Event Calculus using “happens if happens” formulae. For more details,
see [63] or [68]. Davila [10] has done related work on formulating programming
constructs within an Event Calculus framework.

The ramification problem is the problem of representing permanent con-
straints between collections of fluents, and indirect effects of actions propagated
via such constraints, whilst preserving a succinct and elaboration tolerant so-
lution to the frame problem. Shanahan [66] has shown that a straightforward
extension of the Event Calculus can handle many canonical examples of the
ramification problem, including those in which concurrent events simultaneously
affect the same fluent. In Section 4 we show an equivalence between the Event

Calculus and the Language E [21], and E has been extended to deal with ramifi-
cations in [22] by using fixed point definitions to express how actions indirectly
initiate and terminate fluents. It seems likely that this same technique can be
described in the classical Event Calculus using inductive definitions similar to
those in [69] and [70].

To our knowledge, little work has been done in the Event Calculus on rep-
resenting the effects of knowledge producing actions. These are important, for
example, in the context of planning. To catch a flight, an agent may plan to
go to the airport and then look at the departures board to find out which gate
the flight is boarding from. The action of looking at the board doesn’t change
the state of the external world but rather the agent’s knowledge of it. To reason
about such actions, the agent has to have a model about its own future knowl-
edge state and how this will relate to the external world. Work on addressing
these issues in the context of other action formalisms can be found for example
in [36], [38], [46], [47] and [57].

4 A Correspondence Result

The focus of the previous sections has been on the development of Event Calculus
axiomatisations written in standard predicate calculus to represent knowledge
about the effects of actions. In this sense it follows the tradition established
by McCarthy and others in developing the Situation Calculus [40]. Implicit in
such work is the idea that such classical logic theories can act as specifications
for computer programs that simulate various forms of reasoning about the do-
mains represented. However, more recently there has been a trend towards the
use of more specialised logics for representing and reasoning about the effects
of actions, and in particular a growing body of work on the development and
implementation of “action description languages” [16, 17]. It is not our intention
here to argue the merits and demerits of specialised as opposed to general pur-
pose logics. (We do not for example subscribe to the view that formulations in
classical or other general purpose logics require formulations in specialised logics
to act as their “specification” or “semantics”, or that specialised logics are at a
“higher level” because they lack a proof theory.) However, it is clearly advan-
tageous to explore correspondences between various types of representation, so
that results and implementations for one approach can be more readily adapted
to others.

While the majority of action description languages bear a resemblance to
the Situation Calculus, the Language E [21, 22] is inspired by, and inherits its
ontology from, the Event Calculus. In this section we describe the circumstances
under which Event Calculus theories correspond to Language E domain descrip-
tions and may thus take advantage of the provably correct automated proof
procedures that have been developed for E (see e.g. [23], [24], [26]).

4.1 The Language E

The definition of the Language E given here corresponds to that in [21]. (This
definition has subsequently been extended in various ways, in particular to deal
with ramifications and the ramification problem [22, 23].)

The Language E is really a collection of languages. The particular vocabulary
of each language depends on the domain being represented, but always includes
a set of fluent constants, a set of action constants, and a partially ordered set of
time-points. A fluent literal may either be a fluent constant or its negation, as
shown in the following definitions.

Definition 1 (Domain Language). A domain language is a tuple 〈Π,�
,∆, Φ〉, where � is a partial (possibly total) ordering defined over the non-empty
set Π of time points, ∆ is a non-empty set of action constants, and Φ is a
non-empty set of fluent constants.

Definition 2 (Fluent literal). A fluent literal of E is an expression either of
the form F or of the form ¬F , where F ∈ Φ.

Three types of statements are used to describe domains; h-propositions (“h”
for “happens”), t-propositions (“t” for “time point”) and c-propositions (“c” for
“causes”). Their intended meanings are clear from their definitions:

Definition 3 (h-proposition). An h-proposition in E is an expression of the
form

A happens-at T

where A ∈ ∆ and T ∈ Π.

Definition 4 (t-proposition). A t-proposition in E is an expression of the
form

L holds-at T

where L is a fluent literal of E and T ∈ Π.

Definition 5 (c-proposition). A c-proposition in E is an expression either of
the form

A initiates F when C

or of the form

A terminates F when C

where F ∈ Φ, A ∈ ∆, and C is a set of fluent literals of E.

C-propositions of the form “A initiates F when ∅” and “A terminates F
when ∅” can be written more simply as “A initiates F” and “A terminates
F” respectively. A domain description in E is a triple 〈γ, η, τ〉, where γ is a set
of c-propositions, η is a set of h-propositions and τ is a set of t-propositions.

The Event Calculus domain described in Section 2.1 might be described as an
E domain description DR as follows. For action and fluent constants we would
have ∆ = {Insert ,GoThrough,Pickup} and Φ = {Inside,HasKey ,Locked}
respectively. For Π and � we would use the real numbers with the usual
ordering relation. Axioms (R1)–(R4) would be expressed in DR as:

Pickup initiates HasKey
Insert initiates Locked when {¬Locked ,HasKey}

GoThrough initiates Inside when {¬Locked ,¬Inside}
GoThrough terminates Inside when {¬Locked , Inside}

Insert terminates Locked when {Locked ,HasKey}
Locked holds-at 0
Inside holds-at 0

Pickup happens-at 2
Insert happens-at 4

GoThrough happens-at 6

(The reader may also find it useful to compare this collection of propositions
with axioms (R5)–(R12) in Section 2.2.)

The semantics of E is based on simple definitions of interpretations and mod-
els. Since the primary interest is in inferences about what holds at particular
time-points in Π, it is sufficient to define an interpretation as a mapping of
fluent/time-point pairs to true or false (i.e. a “holds” relation). An interpreta-
tion satisfies a fluent literal or set of fluent literals at a particular time-point if it
assigns the relevant truth values to each of the corresponding fluent constants:

Definition 6 (Interpretation). An interpretation of E is a mapping

H : Φ×Π 7→ {true, false}

Definition 7 (Point satisfaction). Given a set of fluent literals C of E and
a time point T ∈ Π, an interpretation H satisfies C at T iff for each fluent
constant F ∈ C, H(F, T) = true, and for each fluent constant F ′ such that
¬F ′ ∈ C, H(F ′, T) = false.

The definition of a model in E is parametric on the definitions of an initiation
point and a termination point. Initiation and termination points are simply time-
points where a c-proposition and an h-proposition combine to describe a direct
effect on a particular fluent:

Definition 8 (Initiation/termination point). Let H be an interpretation of
E, let D = 〈γ, η, τ〉 be a domain description, let F ∈ Φ and let T ∈ Π. T is
an initiation-point (respectively termination-point) for F in H relative to D iff
there is an A ∈ ∆ such that (i) there is both an h-proposition in η of the form
“A happens-at T” and a c-proposition in γ of the form “A initiates F when
C” (respectively “A terminates F when C”) and (ii) H satisfies C at T .

For an interpretation to qualify as a model, three basic properties need to be
satisfied; (1) fluents change their truth values only via occurrences of initiating or
terminating actions, (2) initiating a fluent establishes its truth value as true, and
(3) terminating a fluent establishes its truth value as false. In addition, (4) every
model must match with each of the t-propositions in the domain description:

Definition 9 (Model). Given a domain description D = 〈γ, η, τ〉 in E, an
interpretation H of E is a model of D iff, for every F ∈ Φ and T, T ′, T1, T3 ∈ Π
such that T1 ≺ T3, the following properties hold:

1. If there is no initiation-point or termination-point T2 for F in H relative to
D such that T1 � T2 ≺ T3, then H(F, T1) = H(F, T3).

2. If T1 is an initiation-point for F in H relative to D, and there is no
termination-point T2 for F in H relative to D such that T1 ≺ T2 ≺ T3,
then H(F, T3) = true.

3. If T1 is a termination-point for F in H relative to D, and there is no
initiation-point T2 for F in H relative to D such that T1 ≺ T2 ≺ T3, then
H(F, T3) = false.

4. For all t-propositions in τ of the form “F holds-at T”, H(F, T) = true,
and for all t-propositions of the form “¬F holds-at T ′”, H(F, T ′) = false.

Definition 10 (Consistency). A domain description is consistent iff it has a
model.

Definition 11 (Entailment). A domain description D entails the t-
proposition “F holds-at T”, written7 “D |=E F holds-at T”, iff for every
model H of D, H(F, T) = true. D entails the t-proposition “¬F holds-at T”
iff for every model H of D, H(F, T) = false.

As regards the robot example, using the above definitions it is easy to see
that

DR |=E ¬Inside holds-at 8

More generally, if time is taken as the integers or reals, Definitions 8 and 9
indicate that the Language E corresponds to the “deterministic” Event Calculus
described in Section 3.2, i.e. with domain independent axioms (EC1), (EC2),
(EC3b), (EC4b), (EC5), (EC6), (EC9b) and (EC10b). Specifically condition
1 of Definition 9 mirrors axioms (EC1), (EC2), (EC5) and (EC6), condition 2
mirrors (EC3b) and (EC9b), and condition 3 mirrors (EC4b) and (EC10b). This
correspondence is established more formally in the next section.

7 The symbol |=E is used here to distinguish Language E entailment from entailment in
classical logic. It is identical in meaning to the symbol |= used in other publications
concerning the Language E .

4.2 Translating Between the Event Calculus and E

Clearly, for some domains (such as the robot example) translation from the
Event Calculus to E (and vice versa) is straightforward. Equally clearly, for some
other Event Calculus theories, perhaps with disjunctive or existentially quanti-
fied sentences partially defining Initiates, Terminates, Happens or HoldsAt (e.g.
the robot example extended with (R13)), a translation into the restricted syntax
of E is not possible. But it is difficult and cumbersome in general to describe
necessary and sufficient syntactic conditions whereby an Event Calculus theory
can be translated into an equivalent Language E domain description.

To illustrate, consider the following Event Calculus description of a “mil-
lennium counter” – a display of the minutes passed since 12 midnight on 31
December 2000. Time is taken as the integers, where each integer represents
one second and 0 represents 12 midnight, 31 December 2000. An action Tick
happens once every 60 seconds and increments the display by 1:

Initiates(a, f, t) ≡ [a=Tick ∧ ∃n.[f =Display(n)
∧ HoldsAt(Display(n− 1), t)]]

Terminates(a, f, t) ≡ [a=Tick ∧ ∃n.[f =Display(n)
∧ HoldsAt(Display(n), t)]]

Happens(a, t) ≡ [a=Tick ∧ ∃t′.[t=(t′ ∗ 60)]]

HoldsAt(Display(0), 0) ∧ ∀n.[n 6=0 → ¬HoldsAt(Display(n), 0)]

This axiomatisation might at first seem problematic as regards translation
into E ; it entails an infinite number of positive ground Initiates, Terminates
and Happens literals and (even without augmentation with domain independent
Event Calculus axioms) an infinite number of negative ground HoldsAt literals
(at t = 0). All of these need explicit representation in E . But the following
(infinite) Language E domain description 〈γ, η, τ〉 is well defined and clearly
entails the same collection of “holds at” facts along the time line:

γ = {Tick terminates Display(n) when {Display(n)} | n ∈ Z}
∪
{Tick initiates Display(n) when {Display(m)} |

n, m ∈ Z and n=m+1}

η = {Tick happens-at (t ∗ 60) | t ∈ Π}

τ = {Display(0) holds-at 0}
∪
{¬Display(n) holds-at 0 | n ∈ Z and n 6=0}

This example illustrates that any general syntactic constraints that we place
on Event Calculus theories in order to ensure that they are translatable into E
are likely to be over-restrictive. In what follows, we therefore instead concentrate
on establishing a collection of sufficient (and intuitive) “semantic” constraints for
a correct translation to be possible. Each of these will in most cases be straight-
forward to check from the form of the axiomatisation in question. Precisely what
we mean by a “correct translation” is established in Proposition 1.

In Definitions 12 to 20 and Proposition 1 that follow, we will assume that
D = 〈γ, η, τ〉 is a Language E domain description written in the language 〈Π,≤
,∆, Φ〉 (where Π is either Z or R). We will also assume that TEC is a collection
of (domain dependent) axioms written in a sorted predicate calculus language
of the type described in Section 2 that constrains the interpretation of the sort
T to be Π, and that TEC does not mention the predicates Clipped , Declipped ,
StoppedIn and StartedIn. Furthermore we will assume that the language of TEC

includes all symbols in ∆ as ground terms of sort A and all symbols in Φ as
ground terms of sort F . Notation: We will denote as Φ± the set of all (positive
and negative) fluent literals that can be formed from the fluent constants in
Φ. Given a model M of TEC , ‖G‖M will denote the interpretation (i.e. the
denotation) of the ground term or symbol G in M . We will refer to the set of
domain independent Event Calculus axioms {(EC1), (EC2), (EC3b), (EC4b),
(EC5), (EC6), (EC9b), (EC10b)} (see Sections 2 and 3.2) as DetEC .

The first condition to express is that (in all its models) TEC establishes
uniqueness of names for the fluents and actions referred to in D:

Definition 12 (Name-matches). D name-matches TEC iff for every model
M of TEC , for every F, F ′ ∈ Φ and for every A,A′ ∈ ∆,

– if F 6= F ′ then ‖F‖M 6= ‖F ′‖M , and
– if A 6= A′ then ‖A‖M 6= ‖A′‖M .

Typically this name-matches property might be established by a collection of
inequality statements in TEC between ground fluent and action literals (e.g.
Inside 6=HasKey , etc. in the Robot example) or by universally quantified impli-
cations such as ∀m,n.[Display(m)=Display(n)→ m=n].

The next condition to establish (Definitions 13 to 16 below) is that all inter-
pretations of Initiates, Terminates and Happens licensed by TEC are isomorphic
to the unique interpretation (relative to the interpretation of HoldsAt) explicitly
indicated by the c- and h-propositions in D:

Definition 13 (h-satisfies). Given a model M of TEC , a time-point T ∈ Π
and a set C ⊆ Φ± of Language E fluent literals, M h-satisfies C at T iff for
all F ∈ Φ, if F ∈ C then 〈‖F‖M , T 〉 ∈ ‖HoldsAt‖M , and if ¬F ∈ C then
〈‖F‖M , T 〉 6∈ ‖HoldsAt‖M .

Definition 14 (Initiates-matches). D initiates-matches TEC iff for every
model M of TEC , every time-point T and every action α and fluent φ in the
domain of discourse of M the following holds. 〈α, φ, T 〉 ∈ ‖Initiates‖M if and
only if there exist F ∈ Φ, A ∈ ∆ and C ⊆ Φ± such that α = ‖A‖M , φ = ‖F‖M ,
M h-satisfies C at T , and “A initiates F when C” ∈ γ.

Definition 15 (Terminates-matches). D terminates-matches TEC iff for ev-
ery model M of TEC , every time-point T and every action α and fluent φ in the
domain of discourse of M the following holds. 〈α, φ, T 〉 ∈ ‖Terminates‖M if and
only if there exist F ∈ Φ, A ∈ ∆ and C ⊆ Φ± such that α = ‖A‖M , φ = ‖F‖M ,
M h-satisfies C at T , and “A terminates F when C” ∈ γ.

Definition 16 (Happens-matches). D happens-matches TEC iff for every
model M of TEC , every time-point T and every action α in the domain of dis-
course of M the following holds. 〈α, T 〉 ∈ ‖Happens‖M if and only if there exists
A ∈ ∆ such that α = ‖A‖M and “A happens-at T” ∈ η.

Finally, it is necessary to establish that (without the domain indepen-
dent Event Calculus axioms in DetEC), TEC imposes exactly the same col-
lection of pointwise constraints on the interpretation of HoldsAt that are in-
dicated by the t-propositions in D. To do this it is necessary to impose a do-
main closure property on fluent names (the first condition in Definition 19).
It is also necessary to ensure that TEC does not entail any extra “global de-
pendencies” not captured by the t-propositions of D, either between two or
more fluents (e.g. ∀t.[HoldsAt(HasKey , t) → HoldsAt(Inside, t)]), or between
fluents and other facts represented in TEC (e.g. ∀t.[HoldsAt(HasKey , t) →
SmallEnoughToHold(Key)]). This is guaranteed by the third condition in Defi-
nition 19.

Definition 17 (t-model). An interpretation H of E is a t-model of D iff, for
every F ∈ Φ and T, T ′ ∈ Π, for all t-propositions in τ of the form “F holds-at
T”, H(F, T) = true, and for all t-propositions of the form “¬F holds-at T ′”,
H(F, T ′) = false.

Definition 18 (E-projection). The E-projection of a model M of TEC is
defined as the following (Language E) interpretation HM :

HM (F, T) =
{

true if 〈‖F‖M , T 〉 ∈ ‖HoldsAt‖M
false otherwise

Definition 19 (Holds-matches). D holds-matches TEC iff for every model M
of TEC the following conditions are satisfied:

– for every fluent φ in the domain of discourse of M there exists F ∈ Φ such
that φ = ‖F‖M ,

– the E-projection of M is a t-model of D,
– For every t-model Ht of D there is a model MHt

of TEC which differs
from M only in the interpretation of HoldsAt and is such that Ht is the
E-projection of MHt

.

Definition 20 (matches). D matches TEC iff D name-matches, initiates-
matches, terminates-matches, happens-matches and holds-matches TEC .

Proposition 1. Let F ∈ Φ and let T ∈ Π. If TEC is consistent and D matches
TEC then:

– D |=E F holds-at T iff TEC ∪DetEC |= HoldsAt(F, T)
– D |=E ¬F holds-at T iff TEC ∪DetEC |= ¬HoldsAt(F, T)

Proof. It is sufficient to prove the following:

1. If there exists a model H of D such that H(F, T) = true then there exists a
model MH of TEC ∪DetEC such that MH‖−HoldsAt(F, T).

2. If there exists a model M of TEC∪DetEC such that M‖−HoldsAt(F, T) then
there exists a model HM of D such that HM (F, T) = true.

3. If there exists a model H of D such that H(F, T) = false then there exists
a model MH of TEC ∪DetEC such that MH‖−¬HoldsAt(F, T).

4. If there exists a model M of TEC ∪ DetEC such that M‖−¬HoldsAt(F, T)
then there exists a model HM of D such that HM (F, T) = false.

Proof of (1):
If there exists a model H of D such that H(F, T) = true then by Def-

initions 9 and 17 H is a t-model of D. Hence, since TEC is consistent, by
Definition 19 there exists a model MH of TEC such that H is the E-projection
of MH . Therefore MH‖−HoldsAt(F, T). Since TEC does not mention the
predicates Clipped , Declipped , StoppedIn and StartedIn then clearly we can
assume that MH is such that it satisfies (EC1), (EC2), (EC9b) and (EC10b).
Since D name-matches, initiates-matches, terminates-matches and happens-
matches TEC then by condition 1 of Definition 9 MH satisfies (EC5) and
(EC6), by condition 2 of Definition 9 MH satisfies (EC3b), and by condition
3 of Definition 9 MH satisfies (EC4b). Therefore MH is a model of TEC∪DetEC .

Proof of (2):
If there exists a model M of TEC ∪ DetEC such that M‖−HoldsAt(F, T),

then by Definition 19 the E-projection HM of M is a t-model of D and
HM (F, T) = true. It remains to show that HM satisfies conditions 1, 2 and 3 of
Definition 9. Since D name-matches, initiates-matches, terminates-matches and
happens-matches TEC , it follows directly from the fact that M‖−[(EC5)∧(EC6)]
that HM satisfies condition 1 of Definition 9, it follows directly from the fact
that M‖−(EC3b) that HM satisfies condition 2 of Definition 9, and it follows
directly from the fact that M‖−(EC4b) that HM satisfies condition 1 of
Definition 9.

Proof of (3):
This is identical to the proof of (1), but substituting “H(F, T) = false”

for “H(F, T) = true” and substituting “MH‖−¬HoldsAt(F, T)” for
“MH‖−HoldsAt(F, T)”.

Proof of (4):
This is identical to the proof of (2), but substituting “M‖−¬HoldsAt(F, T)”

for “M‖−HoldsAt(F, T)” and substituting “HM (F, T) = false” for
“HM (F, T) = true”.

(end of proof of Proposition 1)

Proposition 1 is analogous in some respects to the results in [27], which show
the equivalence of various classical logic formulations of the Situation Calculus to
the Language A. But whereas the conditions for the results in [27] are syntactic,
those for Proposition 1 are semantic and so less restrictive. Although checking
through all the conditions for Proposition 1 to hold might at first sight seem
tedious, in many cases the fact that a collection of domain dependent axioms
“matches” a Language E domain description will be obvious. In particular, it is
clear that any Language E domain description written using only a finite number
of action and fluent constants can be straightforwardly translated into an Event
Calculus axiomatisation by formulating sentences analogous to (R1) – (R4) (see
Section 2.1).

As stated earlier, Proposition 1 is useful because it allows the (deterministic)
classical logic Event Calculus to take advantage of the provably correct auto-
mated reasoning procedures developed for E (see [21],[22],[23],[24]). Of these
implementations, the most flexible is that described in [23, 24], which is based
on a sound and complete translation of E into an argumentation framework. The
resulting implementation E-RES [24] [26] allows reasoning backwards and for-
wards along the time line even in cases where information about what holds in
the “initial state” (i.e. before any action occurrences) is incomplete. E-RES has
been further extended into an abductive planning system [25] able to produce
plans and conditional plans even with incomplete information about the status
of fluents along the time line.

5 Summary

In this article, we have described a basic, classical logic variation of the Event
Calculus, and then summarised previous work on how this axiomatisation may
be adapted and/or extended in various ways to represent various features of
particular domains. In particular, we have described versions of the Event Cal-
culus able to incorporate non-deterministic actions, concurrent actions, action
preconditions and qualifications, delayed actions and effects, actions with du-
ration, gradual and continuous change, and mathematical models using sets of
simultaneous differential equations. We have also shown how one particular ver-
sion of the basic Event Calculus may be given a sound and complete translation
into the Language E and thus inherit E ’s provably correct automated reasoning
procedures.

References

1. A. Baker, Nonmonotonic Reasoning in the Framework of the Situation Calculus,
Artificial Intelligence, Vol 49(5-23), 1991.

2. I. Cervesato, L. Chittaro and A. Montanari, A Modal Calculus of Partially Ordered
Events in a Logic Programming Framework, in Proceedings ICLP’95, MIT Press,
pages 299-313, 1995.

3. I. Cervesato, L. Chittaro and A. Montanari, A General Modal Framework for the
Event Calculus and its Skeptical and Credulous Variants, in in W. Wahlster, ed-
itor, Proceedings of the Twelfth European Conference on Artificial Intelligence
(ECAI’96), pp. 33-37, John Wiley and Sons, 1996.

4. I. Cervesato, M. Franceschet and A. Montanari, A Hierarchy of Modal Event Cal-
culi: Expressiveness and Complexity, in H.Barringer et al, Proceedings of the 2nd
International Conference on Temporal Logic (ICTL’97, pp. 1-17, Kluwer Applied
Logic Series, 1997.

5. I. Cervesato, M. Franceschet and A. Montanari, Modal Event Calculi with Pre-
conditions, in R. Morris and L. Khatib, Proceedings of the Fourth International
Workshop on Temporal Reasoning (TIME’97), pp. 38-45, IEEE Computer Society
Press, 1997.

6. I. Cervesato, M. Franceschet and A. Montanari, The Complexity of Model
Checking in Modal Event Calculi with Quantifiers, Journal of Electronic
Transactions on Artificial Intelligence, Linköping University Electronic Press,
http://www.ida.liu.se/ext/etai/, 1998.

7. L. Chittaro, A. Montanari and A. Provetti, Skeptical and Credulous Event Calculi
for Supporting Modal Queries, in A. Cohn, Proceedings of the Eleventh European
Conference on Artificial Intelligence (ECAI’94), pp. 361-365, John Wiley and Sons,
1994.

8. N. Chleq, Constrained Resolution and Abductive Temporal Reasoning, Computa-
tional Intelligence, vol. 12, no. 3, pp. 383406, 1996.

9. J. M. Crawford and D. W. Etherington, Formalizing Reasoning about Change: A
Qualitative Reasoning Approach, Proceedings AAAI’92, pp. 577-583, 1992.

10. J. Davila, Reactive Pascal and the Event Calculus, Proceedings FAPR’96 Work-
shop on Reasoning about Actions and Planning in Complex Environments, eds. U.
Siegmund and M. Thielscher, vol. 11 of Technical Report AIDA, 1996.

11. M. Denecker, L. Missiaen and M. Bruynooghe, Temporal Reasoning with Abductive
Event Calculus, in Proceedings ECAI 92, Vienna, 1992.

12. M. Denecker, K. Van Belleghem, G. Duchatelet, F. Piessens and D. De Schreye
A Realistic Experiment in Knowledge Representation in Open Event Calculus :
Protocol Specification, in Proceedings of the Joint International Conference and
Symposium on Logic Programming, 1996.

13. M. Denecker, D. Theseider Dupré, and K. Van Belleghem, An Inductive Definition
Approach to Ramifications, in Electronic Transactions on Artificial Intelligence, vol
2, 1998.

14. P. Doherty, Reasoning about Action and Change Using Occlusion, Proceedings
ECAI’94, pp. 401-405, 1994.

15. K. Eshghi, Abductive Planning with Event Calculus, Proceedings of the 5th Inter-
national Conference and Symposium on Logic Programming, ed.s Robert Kowalski
and Kenneth Bowen, MIT Press, pp. 562-579, 1988.

16. M. Gelfond and V. Lifschitz, Representing Actions in Extended Logic Programming,
JICSLP’92, ed. Krzysztof Apt, 560, MIT Press, 1992.

17. M. Gelfond and V. Lifschitz, Representing Action and Change by Logic Programs,
JLP, 17 (2,3,4) 301–322, 1993.

18. R. C. Jeffrey, Formal Logic: Its Scope and Limits, McGraw-Hill, 1967.
19. C. G. Jung, K. Fischer and A. Burt, Multi-Agent Planning Using an Abductive

Event Calculus, DFKI Report RR-96-04 (1996), DFKI, Germany, 1996.
20. C. G. Jung, Situated Abstraction Planning by Abductive Temporal Reasoning, Pro-

ceedings ECAI’98, pp. 383387, 1998.

21. A. Kakas and R. Miller, A Simple Declarative Language for Describing Narratives
with Actions, JLP 31(1–3) (Special Issue on Reasoning about Action and Change)
157–200, 1997.

22. A. Kakas and R. Miller, Reasoning about Actions, Narratives and Ramifications,
Journal of Electronic Transactions on Artificial Intelligence 1(4), Linköping Uni-
versity Electronic Press, http://www.ida.liu.se/ext/etai/, 1998.

23. A. Kakas, R. Miller and F. Toni, An Argumentation Framework for Reasoning
about Actions and Change, Proceedings of LPNMR’99, 1999.

24. A. Kakas, R. Miller and F. Toni, E-RES – A System for Reasoning about Actions,
Events and Observations, Proceedings of NMR 2000, Special Session on System
Demonstrations and Descriptions, http://xxx.lanl.gov/abs/cs.AI/0003034,
2000.

25. A. Kakas, R. Miller and F. Toni, Planning with Incomplete Information, Pro-
ceedings of NMR 2000, Special Session on Representing Actions and Planning,
http://xxx.lanl.gov/abs/cs.AI/0003049, 2000.

26. A. Kakas, R. Miller and F. Toni, E-RES - Reasoning about Actions, Events and
Observations, Proceedings of the 6th International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’2001), September 17-19, 2001, Vi-
enna, Austria, ed. T. Eiter, M. Truszczynski and W. Faber, pub. Springer-Verlag
(LNCS/LNAI series), 2001.

27. G. N. Kartha, Soundness and Completeness Theorems for Three Formalizations of
Action, Proceedings IJCAI’93, page 724, 1993.

28. G. N. Kartha and V. Lifschitz, A Simple Formalization of Actions Using Circum-
scription, Proceedings IJCAI’95, pp. 1970-1975, 1995.

29. R. A. Kowalski, Database Updates in the Event Calculus, Journal of Logic Pro-
gramming, vol. 12, pp. 121-146, 1992.

30. R. A. Kowalski, Legislation as Logic Programs, Informatics and the Foundations
of Legal Reasoning, Kluwer Academic Publishers, ed.s Z. Bankowski et al., pp.
325-356, 1995.

31. R. A. Kowalski and F. Sadri, The Situation Calculus and Event Calculus Compared,
in Proceedings of the International Logic Programming Symposium (ILPS’94),
1994.

32. R. A. Kowalski and F. Sadri, Reconciling the Event Calculus with the Situation
Calculus, Journal of Logic Programming, Special Issue on Reasoning about Action
and Change, vol. 31, pp. 39-58, 1997.

33. R. A. Kowalski and M. J. Sergot, A Logic-Based Calculus of Events, New Gener-
ation Computing, vol. 4, pp. 67-95, 1986.

34. B. Kuipers, Qualitative Reasoning: Modeling and Simulation with Incomplete
Knowledge, MIT Press, 1994.

35. F. Lévy and Joachim Quantz, Representing Beliefs in a Situated Event Calculus,
Proceedings ECAI’98, pp. 547551, 1998.

36. H. Levesque, What is Planning in the Presence of Sensing?, in Proceedings of
AAAI’96, 1996.

37. V. Lifschitz, Circumscription, in The Handbook of Logic in Artificial Intelligence
and Logic Programming, Volume 3: Nonmonotonic Reasoning and Uncertain Rea-
soning, ed. D. M. Gabbay, C .J. Hogger and J. A. Robinson, Oxford University
Press, pp. 297-352, 1994.

38. J. Lobo, G. Mendez and S. Taylor, Adding Knowledge to the Action Description
Language A, in Proceedings of AAAI’97, 1997.

39. J. McCarthy, Circumscription A Form of Non-Monotonic Reasoning, Artificial
Intelligence, vol. 13, pp. 27-39, 1980.

40. J. McCarthy and P. J. Hayes, Some Philosophical Problems from the Standpoint
of Artificial Intelligence, in Machine Intelligence 4, ed. D. Michie and B. Meltzer,
Edinburgh University Press, pp. 463-502, 1969.

41. R. Miller, Situation Calculus Specifications for Event Calculus Logic Programs,
in Proceedings of the Third International Conference on Logic Programming and
Non-monotonic Reasoning, Lexington, KY, USA, Springer Verlag, 1995.

42. R. S. Miller and M. P. Shanahan, Reasoning about Discontinuities in the Event
Calculus, Proceedings 1996 Knowledge Representation Conference (KR’96), pp.
6374, 1996.

43. R. S. Miller and M. P. Shanahan, The Event Calculus in Classi-
cal Logic - Alternative Axiomatisations, Journal of Electronic Transac-
tions on Artificial Intelligence, Vol. 3 (1999), Section A, pages 77-105,
http://www.ep.liu.se/ej/etai/1999/016/, 1999.

44. L. R. Missiaen, Localized Abductive Planning for Robot Assembly, Proceedings 1991
IEEE Conference on Robotics and Automation, pub. IEEE Robotics and Automa-
tion Society, pages 605-610, 1991.

45. L. R. Missiaen, M. Denecker and M. Bruynooghe, An Abductive Planning System
Based on Event Calculus, Journal of Logic and Computation, volume 5, number
5, pages 579–602, 1995.

46. R. C. Moore, A Formal Theory of Knowledge and Action, In Hobbs and Moore,
ed.s, Formal Theories of the Commonsense World, Ablex, Norwood, USA, 1985.

47. L. Morgenstern, Knowledge Preconditions for Actions and Plans, in Proceedings
of the International Joint Conference in Artificial Intelligence 1987 (IJCAI’97),
Morgan Kaufmann, 1987.

48. J. Pinto and R. Reiter, Temporal Reasoning in Logic Programming: A Case for the
Situation Calculus, Proceedings ICLP 93, page 203, 1993.

49. A. Provetti, Hypothetical Reasoning about Actions: From Situation Calculus to
Event Calculus, Computational Intelligence, volume 12, number 2, 1995.

50. R. Reiter, The Frame Problem in the Situation Calculus: A Simple Solution (Some-
times) and a Completeness Result for Goal Regression, in Artificial Intelligence and
Mathematical Theory of Computation: Papers in Honor of John McCarthy, ed. V.
Lifschitz, Academic Press, pp. 359-380, 1991.

51. R. Reiter, Natural actions, concurrency and continuous time in the situation cal-
culus, in Principles of Knowledge Representation and Reasoning: Proceedings of
the Fifth International Conference (KR’96), Cambridge, Massachusetts, U.S.A,
November 5-8, 1996.

52. A. Russo, R. Miller, B. Nuseibeh and J. Kramer, An Abductive Approach for Han-
dling Inconsistencies in SCR Specifications, in proceedings of the 3rd International
Workshop on Intelligent Software Engineering (WISE3), Limerick, Ireland, June,
2000.

53. F. Sadri and R. Kowalski, Variants of the Event Calculus, Proceedings of the
International Conference on Logic Programming, Kanagawa, Japan, Stirling L.
(Ed), The MIT Press, pp. 67-81, 1995.

54. E. Sandewall, Combining Logic and Differential Equations for Describing Real
World Systems, Proceedings KR’89, Morgan Kaufman, 1989.

55. E. Sandewall, Filter Preferential Entailment for the Logic of Action in Almost
Continuous Worlds, Proceedings IJCAI’89, pages 894-899, 1989.

56. E. Sandewall, The Representation of Knowledge about Dynamical Systems, Volume
1, Oxford University Press, 1994.

57. R. Scherl and H. Levesque, The Frame Problem and Knowledge-Producing Actions,
in Proceedings of AAAI’93, 1993.

58. M. P. Shanahan, Representing Continuous Change in the Event Calculus, Proceed-
ings ECAI’90, pp. 598-603, 1990.

59. M. P. Shanahan, A Circumscriptive Calculus of Events, Artificial Intelligence, vol
77 (1995), pages 249-284, 1995.

60. M. P. Shanahan, Robotics and the Common Sense Informatic Situation, Proceed-
ings ECAI’96, pp. 684-688, 1996.

61. M. P. Shanahan, Noise and the Common Sense Informatic Situation for a Mobile
Robot, Proceedings AAAI’96, pp. 1098-1103, 1996.

62. M. P. Shanahan, Solving the Frame Problem: A Mathematical Investigation of the
Common Sense Law of Inertia, MIT Press, 1997.

63. M. P. Shanahan, Event Calculus Planning Revisited, Proceedings 4th European
Conference on Planning (ECP’97), Springer Lecture Notes in Artificial Intelligence
no. 1348, pp. 390-402,1997.

64. M. P. Shanahan, Noise, Non-Determinism and Spatial Uncertainty, Proceedings
AAAI’97, pp. 153-158, 1997.

65. M. P. Shanahan, Reinventing Shakey, Working Notes of the 1998 AAAI Fall Sym-
posium on Cognitive Robotics, pp. 125-135, 1998.

66. M. P. Shanahan, The Ramification Problem in the Event Calculus, Proceedings
IJCAI’99, 1999.

67. M. P. Shanahan, A Logical Account of the Common Sense Informatic Situation for
a Mobile Robot, Electronic Transactions on Artificial Intelligence, 1999.

68. M. P. Shanahan, The Event Calculus Explained, in Artificial Intelligence Today,
eds. M. J. Wooldridge and M. Veloso, Springer-Verlag Lecture Notes in Artificial
Intelligence no. 1600, Springer-Verlag, pages 409-430, 1999.

69. E. Ternovskaia, Inductive Definability and the Situation Calculus, in “Transactions
and Change in Logic Databases”, Lecture Notes in Computer Science, volume 1472,
Ed. Freitag B., Decker H., Kifer M. (Eds.), pub. Springer Verlag, 1997.

70. E. Ternovskaia, Causality via Inductive Definitions, in Working Notes of “Prospects
for a Commonsense Theory of Causation”, pages 94-100, AAAI Spring Symposium
Series, March 23-28, 1998.

71. K. Van Belleghem, M. Denecker and D. De Schreye, Representing Continuous
Change in the Abductive Event Calculus, in Proceedings 1994 International Con-
ference on Logic Programming, ed. P. Van Hentenrijck, pages 225-240, 1994.

72. K. Van Belleghem, M. Denecker and D. De Schreye, The Abductive Event Calculus
as a General Framework for Temporal Databases, Proceedings of the International
Conference on Temporal Logic, 1994.

73. K. Van Belleghem, M. Denecker and D. De Schreye, Combining Situation Calcu-
lus and Event Calculus, in Proceedings of the International Conference on Logic
Programming, 1995.

74. K. Van Belleghem, M. Denecker and D. De Schreye, On the Relation Between
Situation Calculus and Event Calculus, Journal of Logic Programming, 31(1–3)
(Special Issue on Reasoning about Action and Change), 1996.

