Storage of 7 ± 2 Short-Term Memories in Oscillatory Subcycles

John E. Lisman; Marco A. P. Idiart


Stable URL: http://links.jstor.org/sici?sici=0036-8075%2819950310%293%3A267%3A5203%3C1512%3ASO72SM%3E2.0.CO%3B2-0

Science is currently published by American Association for the Advancement of Science.

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at http://uk.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://uk.jstor.org/journals/aaas.html.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org.
that the AMPA receptor EPSC could be recorded in isolation (Fig. 2). Activation of NMDA receptors by the conditioning stim- 
uli had no effect on the amplitude of the AMPA receptor test EPSC (100.1 ± 1.6%, n = 6). AMPA receptor EPSCs recorded in the presence of 2 mM extracellular Mg²⁺ to block NMDA receptor currents were not affected by 100 μM D-AP5 (n = 4).

In outside-out patches, the fast phase of development of glycine-insensitive desen- 
sitization is blocked by internal BAPTA, by ATP-γ-S, and by inhibitors of calcineurin (7). We used the same manipulations to block the synaptic form of desensitization. Although there was no difference in the amount of desensitization in recordings with 0.5 to 20 mM internal EGTA, 20 mM in- 
ternal BAPTA blocked desensitization (Fig. 3, A and C). Addition of the specific inhibi- 	ors of calcineurin, cyclosporin A (200 to 500 nM), FK506 (200 to 500 nM), or cal- 
cineurin inhibitory peptide (270 μM) (16), blocked synaptic desensitization after 4 to 7 min of recording (Fig. 3, B and C). Synaptic desensitization was not prevented by calcy- 
lin A (200 nM), a phosphatase 1 and 2A inhibitor (17); by intracellular vandate (1 mM); a tyrosine phosphatase inhibitor (18); or by phalloidin (1 μM), which stabilizes filamentous actin (19) and has been shown to prevent Ca²⁺-dependent rundown of the 
NMDA receptor (20) (Fig. 3C). However, inclusion of 1 mM ATP-γ-S in the internal solution blocked desensitization within 4 to 6 min of the start of recordings (Fig. 3C).

These results indicate that the phos- 
phorylation state of the NMDA receptor, or of an associated protein, alters NMDA recep- 
tor desensitization. Because synaptic de- 
sensitization is dependent on Ca²⁺ influx through NMDA receptor channels and sub- 
sequent activation of calcineurin, synaptic 
NMDA receptor complex may be dephos- 
horylated with each quantum of released 
transmitter. Inhibition of the effect of Ca²⁺ 
influx by chelation required the extremely 
fast binding properties of BAPTA (21); 
EGTA at concentrations that result in 
smaller amounts of free Ca²⁺ at equilibrium 
did not block synaptic desensitization. This 
observation suggests that the site of action of 
Ca²⁺ is very close to the cytoplasmic face 
of synaptic NMDA receptor channels. Cal- 
cineurin is reported to be associated with 
postsynaptic densities (22); this provides the 
spatial specificity for this mechanism.

Because recovery from desensitization re- 
quires several seconds, regulation of NMDA 
receptor function by this mechanism may be 
strong enough to significantly alter Ca²⁺- 
dependent processes invoked by repetitive 
synaptic activity. The balance between ho- 
mosynaptic LTD and LTP in the hippocam- 
pus depends in part on the magnitude of the 
increase of intracellular Ca²⁺ concentration

Storage of 7 ± 2 Short-Term Memories in 
Oscillatory Subcycles

John E. Lisman* and Marco A. P. Idiart

Psychophysical measurements indicate that human subjects can store approximately seven short-term memories. Physiological studies suggest that short-term memories are 
stored by patterns of neuronal activity. Here it is shown that activity patterns associated 
with multiple memories can be stored in a single neural network that exhibits nested 
oscillations similar to those recorded from the brain. Each memory is stored in a different 
high-frequency ("40 hertz") subcycle of a low-frequency oscillation. Memory patterns 
repeat on each low-frequency (5 to 12 hertz) oscillation, a repetition that relies on activity- 
dependent changes in membrane excitability rather than reverberatory circuits. This work 
suggests that brain oscillations are a timing mechanism for controlling the serial pro- 
cessing of short-term memories.

Some forms of short-term memory appear 
to be stored by neurons that continue to fire 
after they are excited by a brief input (1). 
Hebb and others (2) proposed that such 
firing is sustained by reverberation of elec- 
trical activity in neuronal loops. We now 
demonstrate the feasibility of an alternative 
mechanism that is based on known proper- 
ties of hippocampal and cortical neurons: 
Firing is sustained by an increase in mem-
brane excitability (3, 4) that is refreshed on each cycle of a network oscillation. We also show that a simple oscillatory neuronal network that incorporates this mechanism can store multiple short-term memories, in accordance with psychophysical experiments showing that humans can store 7 ± 2 short-term memories (5). The model is based on the properties of known brain oscillations and suggests a specific role for these oscillations in memory function.

A mechanism by which firing can be maintained during short-term memory is suggested by recent biophysical measurements of the effects of acetylcholine and serotonin, neuromodulators that are released during periods of brain oscillation (6). In the absence of these neuromodulators, firing induces an afterhyperpolarization, which results in a transient decrease in excitability. However, in their presence, firing induces an afterdepolarization (ADP), which results in a transient increase in excitability (3). This ADP is too brief to account for the duration of short-term memory, but it is long enough to store information between cycles of oscillations in the theta-alpha range (5 to 12 Hz). Thus, if the ADP triggered in one cycle promoted firing in the next, the ADP would be refreshed during each cycle and firing could be maintained for many cycles. To examine this putative storage role of the ADP, we performed computer simulations. Each neuron (Fig. 1A) was assumed to receive a suprathreshold excitatory input that carries the information to be stored and an input that generates a subthreshold low-frequency oscillation. The simulations show (Fig. 1A) that after a neuron is excited by a single brief input, it fires on subsequent oscillatory cycles, thereby performing a storage function. A single memory could be stored by the spatial pattern of firing in a group of such neurons.

We next elaborated on this model to account for the ability of the brain to store approximately seven short-term memories (5) (Fig. 2A). An important clue regarding the underlying mechanisms is provided by experiments performed by Sternberg (7): A subject was exposed to a list of items and then to a test item. The subject pressed a button to indicate whether the test item was on the list and the reaction time was measured. For each additional item on the list, the reaction time increased by ~38 ms (Fig. 2B), an observation that is consistent with a serial scan process. This time increment corresponds to a cycle of a high-frequency brain oscillation in the beta-gamma range (8). If seven cycles of high-frequency oscillation were nested together by a low-frequency oscillation, the nesting oscillation would be in the range of alpha-theta oscillations (5 to 12 Hz). Thus, different memories may be stored in different high-frequency (“40 Hz”) subcycles of a low-frequency oscillation. This possibility is strengthened by recent observations in cor-

---

Fig. 1. (A) The ADP allows information storage in a single cell. The neuron receives a suprathreshold informational input and a second, subthreshold input that induces the membrane potential to oscillate at theta frequency (negative phase due to inhibition). Simulations (23) show membrane potential before and after informational input (arrowhead). (B) Network in which pyramidal cells make converging excitatory synapses onto an inhibitory interneuron that produces feedback inhibition of pyramidal cells. (C) The network can maintain the firing and correct phase of seven groups of cells that are active during different subcycles of the low-frequency oscillation. Each trace illustrates the synchronous firing of a group of cells whose spatial pattern encodes the memory of a letter. The dashed lines during the second and fourth theta cycles show the different subcycles. The limited memory capacity of the network is demonstrated by its failure to store eight memories. Input of the memory X is successful (arrowhead), but R is lost. (D) If feedback inhibition is removed (arrowhead), the “40-Hz” oscillation and phase information is rapidly lost. The two traces represent two of the seven memories stored in the network. A small phase difference is too small to be shown) persists for one cycle after removal of inhibition.

Fig. 2. Psychophysical and physiological data relevant to the model of short-term memory. (A) Human short-term memory capacity for list items. Probability of correct recall of entire list (y axis) as a function of list size (x axis). [Reproduced with permission from (24)] (B) Evidence for exhaustive serial scanning of the memory list. The subject responds if the test item is on the stored list. Response time is plotted as a function of the number of symbols in memory. [Reproduced with permission from (7)] (C) Nested oscillations demonstrated in a magnetoencephalographic recording of human cortical responses evoked by an acoustic stimulus. [Reproduced with permission from (9)] (D) Nested oscillations recorded from the hilar region of the rat hippocampus. The record is an average, triggered on high-frequency peaks of the waveform. [Reproduced with permission from Bragin et al. (10)] (E) ADP recorded with an intracellular microelectrode from a cortical pyramidal cell. The large initial deflection is due to a current pulse that evokes action potentials. After the end of current injection, the ADP rises slowly and then falls (previously unpublished record provided by R. Andrade).

J. E. Lisman, Department of Biology and Center for Complex Systems, Brandeis University, Waltham, MA 02254, USA.
M. A. P. Idziak, Department of Physics and Center for Complex Systems, Brandeis University, Waltham, MA 02254, USA.

*To whom correspondence should be addressed: Center for Complex Systems, Brandeis University, Waltham, MA 02254, USA.
Figures 2C and hippocampus (Fig. 2D) showing that approximately seven high-frequency subcycles are nested in a low-frequency oscillation (9, 10). The ADP provides a mechanism for storing different memories in different subcycles? An important feature of the ADP is its slow rise (Fig. 2E). The most excitable cells are therefore not those that just fired, but those that fired earliest. More specifically, the most excitable cells in the first subcycle of a low-frequency oscillation would be those that fired on the first subcycle of the previous low-frequency cycle. Similarly, the most excitable cells in the second subcycle would be those that fired on the second subcycle of the previous cycle. The slow increase in the ADP thus provides ramps of excitation that could serve as a basis for ordering multiple memories (11). Figure 1B shows a network of cells, each of which can generate an ADP. The neurons receive continuous oscillatory input and pooled feedback inhibition (10), the function of which is to partition a cycle into subcycles. The first part of the simulation (Fig. 1C, left of arrowhead) shows that a network with these properties can faithfully store seven nonoverlapping memories (12). The columnar memories were previously loaded into the networks by brief activation of informational inputs. Each memory is represented by a group of cells that fire simultaneously during a particular subcycle. When a different group of cells is briefly presented with the eighth pattern, X, at its informational inputs (Fig. 1C, arrowhead), this group then fires on the first subcycle of each subsequent cycle. Previous memories are shifted back one subcycle, and the memory pattern stored in the last subcycle, R, is lost for alternative associations and ideas concerning reality (13, 14). The number of memories that can be stored without loss depends on variables that we have adjusted in order to limit the number to seven, in accord with average human performance (5). This simulation demonstrates that the network shown in Fig. 1B can store multiple memories and keep them separate by phase (oscillatory subcycles). The number of short-term memories that can be stored is limited by the number of subcycles that fit within a low-frequency cycle. In the model, the presence of subcycles is dependent on the feedback inhibition (Fig. 1D).

Systematic changes in the phase of cell firing occur as new information is introduced into the network (Fig. 1C). The observation of systematic phase changes in hippocampal place cells (15) thus suggests that the storage mechanism we have modeled may be applicable to the hippocampus. A second important feature of the model is the property of time compression: Sequential memories inserted over many seconds are recreated in the network at intervals of only a few milliseconds (10). Such compression might enable the N-methyl-D-aspartate subtype of glutamate receptor channel, which exhibits an association mechanism with a 100-ms time scale, to form associations between events that occurred at much greater intervals.

Our model is consistent with the previous proposal (16, 17) that the phase of cell firing in oscillatory networks can be used to distinguish different activity patterns. However, our model predicts that cells are not likely to fire on sequential 40-Hz subcycles because different subcycles represent different information. The available data appear consistent with this view (18) and recent experiments show directly that sequential 40-Hz waves relate to different rather than identical perceptual information (19). Another prediction is that memory patterns repeat on each low-frequency brain oscillation. Consistent with this view is the observation that brief sensory stimulation or cortical electrical stimulation produces electroencephalographic afterdischarges that repeat at the low-frequency, alpha rhythm (20). The model could be further tested by artificially exciting single cells. Because the proposed memory mechanism is based on an intrinsic neuronal property, the ADP, the model predicts that a cell should continue to fire on subsequent oscillatory cycles. The analysis of electrical events during short-term memory tasks (21) should provide a further basis for testing the ideas proposed here.

Note added in proof: We have recently become aware of a report (22) showing oscillatory activity ~4 Hz during a short-term memory task.

REFERENCES AND NOTES

INTERHELICAL ANGLES IN THE SOLUTION STRUCTURE OF THE OLIGOMERIZATION DOMAIN OF p53: CORRECTION

We recently presented the solution structure of the oligomerization domain (residues 319–360) of the tumor suppressor p53 using an multidimensional heteronuclear-edited and filtered nuclear magnetic resonance (NMR) spectroscopy (1). The structure comprised a dimer of dimers, each dimer being formed by two antiparallel helices and an antiparallel β sheet. The two dimers were arranged approximately orthogonal to each other such that the tetramer formed a four-helical bundle with the antiparallel β sheets lying on opposing faces of the molecule. After the determination of the NMR structure, the crystal structure of the oligomerization domain was solved by Nikola Pavletich and his colleagues and kindly provided to us for comparison (2). While the overall topology of the tetramer was the same in the NMR and x-ray structures, a difference in the orientation of the two dimers (that is between the AC dimer and the BD dimer) was observed. Specifically, the angle between the long axes of helices A and B was 114° in the solution structure versus 80° in the crystal structure. Thus, while the structure of the dimer was similar, the root-mean-square (rms) difference between our proposed NMR structure and the x-ray structure for the complete tetramer was large (3 Å). This difference involves a rigid body rotation of one dimer relative to the other about the symmetry axis of the tetramer and is readily appreciated from the ribbon diagrams of the original NMR structure and the x-ray structure (Fig. 1, A and B, respectively). It is important to determine whether a genuine difference between solution and crystal structures exists, or whether a misinterpretation of the NMR data could be the cause of this discrepancy.

To this end, we reexamined our nuclear Overhauser enhancement (NOE) data obtained from both the four-dimensional (4D) 1H-13C-1H-13C-separated and three-dimensional (3D) 1H-13C-separated 1H-13C-filtered NOE spectra. We found that, although the partitioning of the intersubunit NOEs was correct, there were three errors in NOE assignments involving contacts between the A and B subunits (and by symmetry between the C and D subunits). Specifically, the weak NOEs between Lys353-CeH(A) and Met348-CyH(B), Lys353-CyH(A) and Met348-CeH(B), and Lys353-CyH(A) and Met348-CeH(B), which were only identified in the 4D 1H-13C-13C-separated NOE spectrum, were a

13C/13C-separated and three-dimensional (3D) 1H-13C-separated 1H-13C-filtered NOE spectra.