GEE News Publication
A A A

Gee Research Blog

Male Promiscuity Boosts Role of Chance in Sex Chromosome Evolution

Thu, 19 Mar 2015 15:02:31 +0000

Humans, like all mammals and birds, determine sex with chromosomes. Whether a fertilised egg develops into a male or female depends on what chromosomes it carries Scientists have long recognised that genes evolve a little differently on the sex chromosomes, and recent research in GEE suggests this may be due to differing patterns of inheritance […]

The post Male Promiscuity Boosts Role of Chance in Sex Chromosome Evolution appeared first on GEE Research.

Read more...

Sloths Move Slow, Evolve Fast

Wed, 11 Mar 2015 18:20:41 +0000

Sloths might be notorious for their leisurely pace of life, but research published last year shows they are no slow coaches when it comes to evolution. Sloths, as we know and love them, are small, slow-moving creatures found in the trees of tropical rainforests. But modern sloths are pretty odd compared to their extinct relatives. […]

The post Sloths Move Slow, Evolve Fast appeared first on GEE Research.

Read more...

Write About Research – A GEE Research Blog Competition

Tue, 03 Mar 2015 15:28:43 +0000

The GEE Research blog communicates UCL science with a wider, non-specialist audience, by providing short summaries of recent research in the department of UCL Genetics, Evolution and Environment. This provides an opportunity to engage with a broad audience, including other academics, students, members of the public, and even businesses and policy-makers. It is a great […]

The post Write About Research – A GEE Research Blog Competition appeared first on GEE Research.

Read more...

Was Fermentation Key to Yeast Diversification?

Tue, 17 Feb 2015 15:30:43 +0000

From bread to beer, yeast has shaped our diets and our recreation for centuries. Recent research in GEE shows how humans have shaped the evolution of this important microorganism. As well as revealing the evolutionary origins of modern fission yeast, the new study published in Nature Genetics this month shows how techniques developed for detecting […]

The post Was Fermentation Key to Yeast Diversification? appeared first on GEE Research.

Read more...

Planning for the Future – Resilience to Extreme Weather

Thu, 15 Jan 2015 15:13:14 +0000

As climate change progresses, extreme weather events are set to increase in frequency, costing billions and causing immeasurable harm to lives and livelihoods. GEE’s Professor Georgina Mace contributed to the recent Royal Society report on “Resilience to Extreme Weather”, which predicts the future impacts of increasing extreme weather events, and evaluates potential strategies for improving […]

The post Planning for the Future – Resilience to Extreme Weather appeared first on GEE Research.

Read more...

Orgin of life emerged from cell membrane bioenergetics

20 December 2012

A coherent pathway which starts from no more than rocks, water and carbon dioxide and leads to the emergence of the strange bio-energetic properties of living cells, has been been traced for the first time in a major hypothesis paper in Cell this week.

At the origin of life, before the emergence of evolution-refined enzymes that make reactions more efficient, the first protocells must have needed a vast amount of energy to drive their metabolism and their replication.

So where did it all that energy come from on the early Earth, and how did it get focused into driving the organic chemistry required for life?

The answer lies in the chemistry of deep-sea hydrothermal vents. In their paper Nick Lane (UCL, Genetics, Evolution and Environment) and Bill Martin (University of Dusseldorf) address the question of where all this energy came from –- and why all life as we know it conserves energy in the peculiar form of ion gradients across membranes.

Life is, in effect, a side-reaction of an energy-harnessing reaction. Living organisms require vast amounts of energy to go on living. Humans consume more than a kilogram ( more than 700 litres) of oxygen every day, exhaling it as carbon dioxide. The simplest cells, growing from the reaction of hydrogen with carbon dioxide, produce about 40 times as much waste product from their respiration as organic carbon (by mass). In all these cases, the energy derived from respiration is stored in the form of ion gradients over membranes.

This strange trait is as universal to life as the genetic code itself. Lane and Martin show that bacteria capable of growing on no more than hydrogen and carbon dioxide are remarkably similar in the details of their carbon and energy metabolism to the far-from-equilibrium chemistry occurring in a particular type of deep-sea hydrothermal vent, known as alkaline hydrothermal vents.

Based on measured values, they calculate that natural proton gradients, acting across thin semi-conducting iron-sulfur mineral walls, could have driven the assimilation of organic carbon, giving rise to protocells within the microporous labyrinth of these vents.

They go on to demonstrate that such protocells are limited by their own permeability, which ultimately forced them to transduce natural proton gradients into biochemical sodium gradients, at no net energetic cost, using a simple Na+/H+ transporter. Their hypothesis predicts a core set of proteins required for early energy conservation, and explains the puzzling promiscuity of respiratory proteins for both protons and sodium ions.

These considerations could also explain the deep divergence between bacteria and archaea (single celled microorganisms) . For the first time, says Lane, "It is possible to trace a coherent pathway leading from no more than rocks, water and carbon dioxide to the strange bioenergetic properties of all cells living today."

Further reading: Nature News How life emerged from deep-sea rocks

Page last modified on 20 dec 12 09:58