A A A

Gee Research Blog

Changing Perspectives in Conservation

Thu, 18 Dec 2014 12:15:44 +0000

Our views of the importance of nature and our place within have changed dramatically over the the last century, and the prevailing paradigm has profound influences on conservation from the science that is conducted to the policies that are enacted. In a recent perspectives piece for Science, GEE’s Professor Georgina Mace considered the impacts that […]

The post Changing Perspectives in Conservation appeared first on GEE Research.

Read more...

Function Over Form: Phenotypic Integration and the Evolution of the Mammalian Skull

Mon, 08 Dec 2014 14:05:52 +0000

Our bodies are more than just a collection of independent parts – they are complex, integrated systems that rely upon precise coordination in order to function properly. In order for a leg to function as a leg, the bones, muscles, ligaments, nerves and blood vessels must all work together as an integrated whole. This concept, […]

The post Function Over Form:
Phenotypic Integration and the Evolution of the Mammalian Skull
appeared first on GEE Research.

Read more...

The Best of Both Worlds:Planning for Ecosystem Win-Wins

Sun, 16 Nov 2014 12:25:44 +0000

The normal and healthy function of ecosystems is not only of importance in conserving biodiversity, it is of utmost importance for human wellbeing as well. Ecosystems provide us with a wealth of valuable ecosystem services from food to clean water and fuel, without which our societies would crumble. However it is rare that only a […]

The post The Best of Both Worlds:
Planning for Ecosystem Win-Wins
appeared first on GEE Research.

Read more...

Life Aquatic: Diversity and Endemism in Freshwater Ecosystems

Thu, 06 Nov 2014 11:22:07 +0000

Freshwater ecosystems are ecologically important, providing a home to hundreds of thousands of species and offering us vital ecosystem servies. However, many freshwater species are currently threatened by habitat loss, pollution, disease and invasive species. Recent research from GEE indicates that freshwater species are at greater risk of extinction than terrestrial species. Using data on […]

The post Life Aquatic:
Diversity and Endemism in Freshwater Ecosystems
appeared first on GEE Research.

Read more...

Handicaps, Honesty and VisibilityWhy Are Ornaments Always Exaggerated?

Thu, 23 Oct 2014 13:30:30 +0000

Sexual selection is a form of natural selection that favours traits that increase mating success, often at the expense of survival. It is responsible for a huge variety of characteristics and behaviours we observe in nature, and most conspicuously, sexual selection explains the elaborate ornaments such as the antlers of red deer and the tail […]

The post Handicaps, Honesty and Visibility
Why Are Ornaments Always Exaggerated?
appeared first on GEE Research.

Read more...

16 April 2013

GEE/CEE Seminar on mitochondria, hybrid breakdown and the origin of species


"Consequences of rapid mtDNA evolution: compensatory coadaptation, hybrid breakdown and speciation"


Speaker:

Ron Burton, Professor of Marine Biology, Scripps Institution of Oceanography, University of California San Diego
Date & Time:
Wednesday, 17 April at 5pm
Venue: Medical Sciences AV Hill Lecture Theatre (map)
Host: Nick Lane (Ext 31385)


Abstract:

Despite its small size and limited gene content, the rapid evolution of the mitochondrial genome (mtDNA) has significant implications for the evolution of animal populations.  Aerobic metabolism requires all 13 of the mtDNA-encoded proteins in addition to >70 nuclear proteins.  In addition,  ~100 additional nuclear proteins are required for the transcription and translation of the mtDNA and must be imported into the mitochondria.  Consequently, there are many interactions between mtDNA and nucDNA that favor extensive intergenomic coadaptation.  When genetically divergent populations hybridize, coadaptation can be disrupted and lead to mitochondrial dysfunction and reduced fitness (hybrid breakdown). Interpopulation crosses between populations of the copepod Tigriopus californicus provide a good example of this scenario, as hybrid breakdown is due, in large measure, to intergenomic interactions affecting mitochondrial function (manifested in reduced ATP production and increased oxidative damage).  Recent work using transcriptomic analyses of both hybrid breakdown and population adaptation to thermal stress in Tigriopus will also be briefly discussed.

Page last modified on 29 apr 13 16:41