A A A

Gee Research Blog

Was Fermentation Key to Yeast Diversification?

Tue, 17 Feb 2015 15:30:43 +0000

From bread to beer, yeast has shaped our diets and our recreation for centuries. Recent research in GEE shows how humans have shaped the evolution of this important microorganism. As well as revealing the evolutionary origins of modern fission yeast, the new study published in Nature Genetics this month shows how techniques developed for detecting […]

The post Was Fermentation Key to Yeast Diversification? appeared first on GEE Research.

Read more...

Planning for the Future – Resilience to Extreme Weather

Thu, 15 Jan 2015 15:13:14 +0000

As climate change progresses, extreme weather events are set to increase in frequency, costing billions and causing immeasurable harm to lives and livelihoods. GEE’s Professor Georgina Mace contributed to the recent Royal Society report on “Resilience to Extreme Weather”, which predicts the future impacts of increasing extreme weather events, and evaluates potential strategies for improving […]

The post Planning for the Future – Resilience to Extreme Weather appeared first on GEE Research.

Read more...

Forecasting Extinction

Mon, 05 Jan 2015 11:33:21 +0000

Classifying a species as either extinct or extant is important if we are to quantify and monitor current rates of biodiversity loss, but it is rare that a biologist is handy to actually observe an extinction event. Finding the last member of a species is difficult, if not impossible, so extinction classifications are usually estimates […]

The post Forecasting Extinction appeared first on GEE Research.

Read more...

Changing Perspectives in Conservation

Thu, 18 Dec 2014 12:15:44 +0000

Our views of the importance of nature and our place within have changed dramatically over the the last century, and the prevailing paradigm has profound influences on conservation from the science that is conducted to the policies that are enacted. In a recent perspectives piece for Science, GEE’s Professor Georgina Mace considered the impacts that […]

The post Changing Perspectives in Conservation appeared first on GEE Research.

Read more...

Function Over Form: Phenotypic Integration and the Evolution of the Mammalian Skull

Mon, 08 Dec 2014 14:05:52 +0000

Our bodies are more than just a collection of independent parts – they are complex, integrated systems that rely upon precise coordination in order to function properly. In order for a leg to function as a leg, the bones, muscles, ligaments, nerves and blood vessels must all work together as an integrated whole. This concept, […]

The post Function Over Form:
Phenotypic Integration and the Evolution of the Mammalian Skull
appeared first on GEE Research.

Read more...

16 April 2013

GEE/CEE Seminar on mitochondria, hybrid breakdown and the origin of species


"Consequences of rapid mtDNA evolution: compensatory coadaptation, hybrid breakdown and speciation"


Speaker:

Ron Burton, Professor of Marine Biology, Scripps Institution of Oceanography, University of California San Diego
Date & Time:
Wednesday, 17 April at 5pm
Venue: Medical Sciences AV Hill Lecture Theatre (map)
Host: Nick Lane (Ext 31385)


Abstract:

Despite its small size and limited gene content, the rapid evolution of the mitochondrial genome (mtDNA) has significant implications for the evolution of animal populations.  Aerobic metabolism requires all 13 of the mtDNA-encoded proteins in addition to >70 nuclear proteins.  In addition,  ~100 additional nuclear proteins are required for the transcription and translation of the mtDNA and must be imported into the mitochondria.  Consequently, there are many interactions between mtDNA and nucDNA that favor extensive intergenomic coadaptation.  When genetically divergent populations hybridize, coadaptation can be disrupted and lead to mitochondrial dysfunction and reduced fitness (hybrid breakdown). Interpopulation crosses between populations of the copepod Tigriopus californicus provide a good example of this scenario, as hybrid breakdown is due, in large measure, to intergenomic interactions affecting mitochondrial function (manifested in reduced ATP production and increased oxidative damage).  Recent work using transcriptomic analyses of both hybrid breakdown and population adaptation to thermal stress in Tigriopus will also be briefly discussed.

Page last modified on 29 apr 13 16:41