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Binomial confidence intervals and contingency tests: mathematical
fundamentals and the evaluation of alternative methods
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Abstract: Many statistical methods rely on an underlying mathematical model of probability which is based on a
simple approximation, one that is simultaneously well-known and yet frequently poorly understood. This
approximation is the Normal approximation to the Binomial distribution, and it underpins a range of statistical
tests and methods, including the calculation of accurate confidence intervals, performing goodness of fit and
contingency tests, line- and model-fitting, and computational methods based upon these.

What these methods have in common is the assumption that the likely distribution of error about an
observation is Normally distributed. The assumption allows us to construct simpler methods than would
otherwise be possible. However this assumption is fundamentally flawed.

This paper is divided into two parts: fundamentals and evaluation. First, we examine the estimation of error
using three approaches: the ‘Wald’ (Normal) interval, the Wilson score interval and the ‘exact’ Clopper-Pearson
Binomial interval. Whereas the first two can be calculated directly from formulae, the Binomial interval must be
approximated towards by computational search, and is computationally expensive. However this interval
provides the most precise significance test, and therefore will form the baseline for our later evaluations. We
consider two further refinements: employing log-likelihood in computing intervals (also requiring search) and
the effect of adding a correction for the transformation from a discrete distribution to a continuous one.

In the second part of the paper we consider a thorough evaluation of this range of approaches to three distinct
test paradigms. These paradigms are the single interval or 2 × 1 goodness of fit test, and two variations on the
common 2 × 2 contingency test. We evaluate the performance of each approach by a ‘practitioner strategy’.
Since standard advice is to fall back to ‘exact’ Binomial tests in conditions when approximations are expected to
fail, we simply count the number of instances where one test obtains a significant result when the equivalent
exact test does not, across an exhaustive set of possible values.

We demonstrate that optimal methods are based on continuity-corrected versions of the Wilson interval or
Yates’ test, and that commonly-held assumptions about weaknesses of χ2

 tests are misleading. Log-likelihood,
often proposed as an improvement on χ2

, performs disappointingly. At this level of precision we note that we
may distinguish the two types of 2 × 2 test according to whether the independent variable partitions the data into
independent populations, and we make practical recommendations for their use.

Keywords: chi-square (χ2
), log-likelihood, contingency test, confidence interval, z test, Wilson score interval,

Newcombe-Wilson test, independent populations

1. Introduction

Estimating the error in an observation is the first, crucial step in inferential statistics. It allows us to

make predictions about what would happen were we to repeat our experiment multiple times, and

because each observation represents a sample of the population, predict the true value in the

population (Wallis forthcoming).

Consider an observation that a proportion p of a sample of size n is of a particular type. For example

• the proportion p of coin tosses in a set of n throws that are heads,

• the proportion of light bulbs p in a production run of n bulbs that fail within a year,

• the proportion of patients p who have a second heart attack within six months after a drug trial

has started (n being the number of patients in the trial),

• the proportion p of interrogative clauses n in a spoken corpus that are finite.

We have one observation of p, as the result of carrying out a single experiment. We now wish to

infer about the future. We would like to know how reliable our observation of p is without further

sampling. Obviously, we don’t want to repeat a drug trial on cardiac patients if the drug may be

adversely affecting their survival.
1

2. Computing confidence intervals

We need to estimate the ‘margin of error’ or to use the proper term, confidence interval, on our

                                                
1
 A very important application of confidence intervals is determining how much data is enough to rule that a change is

significant. A large decrease in survivability among patients would lead one to stop the trial early. But one early death

could be accidental.
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observation. A confidence interval tells us that at a given level of certainty, if our scientific model is

correct, the true value in the population will likely be in the range identified. The larger the

confidence interval, the less certain the observation will be. There are several different approaches

to calculating confidence intervals, and we will begin by discussing the most common method.

2.1 The ‘Wald’ interval

The standardised ‘Wald’ confidence interval employs the Normal approximation to the Binomial

distribution sketched in Figure 1. The actual distribution, shown by the columns, is assumed to be a

discrete Binomial distribution, but to obtain the interval we first approximate it to a continuous

Normal curve, shown by the line. This relies on the following definitions:

mean x̄ ≡ p,

standard deviation s ≡ npp /)1( − , (1)

confidence interval (e
–
, e

+
) ≡ (p – zα/2.s, p + zα/2.s).

Here n represents the sample size, p the proportion of the sample in a particular class and zα/2 is the

critical value of the Normal distribution for a given error level α. This means that if data is

Normally distributed, and the error level α is 0.05, 95% of the expected distribution is within this

interval, and only 2.5% in each of the ‘tails’ outside. This critical value is 1.95996.

The larger the value of n the more ‘continuous’ the line, and the more confident we can be in p, so

the confidence interval will shrink as n increases. But what happens if n is small or p is close to zero

or 1? Whereas the Normal distribution is assumed to be unconstrained (the tails go off in either

direction to infinity), p cannot, for obvious reasons, exceed

the range [0, 1].

Two issues arise. First, as we shall see, where p tends to 0

or 1, the product p(1 – p) also tends to 0, leading to an

underestimation of the error. Second, although s tends to

zero, the interval can cross zero. However, points on the

axis where p < 0 (or p > 1) are impossible to reach

(Figure 2), so the approximation fails. Since linguists are

often interested in changes in low frequency events, this is

not an unimportant question!

Aarts, Close and Wallis (2013) examined the alternation

over time in British English from first person declarative

uses of modal shall to will over a thirty year period by

plotting over time the probability of selecting shall given

the choice, which we can write as p(shall | {shall, will}).

Their data is reproduced in Table 1. Note that the dataset

has a number of attributes: data is sparse (this corpus is

below 1 million words) and many datapoints are skewed:

observed probability does not merely approach zero or 1

but reaches it.

We have added five columns to Table 1. Column A

contains the Wald 95% error interval width zα/2.s, B and C

contain the lower and upper bounds e
–
, e

+
 respectively,

obtained by subtracting and adding Column A from

p(shall). Columns D and E contain the lower and upper

bounds of the Wilson interval described in section 2.2.

x̄ = p

p

zαααα/2 . s zαααα/2 . s

Figure 1. The Normal approximation

to the Binomial plotted within the

probabilistic range p ∈ [0, 1].

x̄ = p

p

zαααα/2 . s zαααα/2 . s

0

?

Figure 2. As above but p is close to

zero. What happens if the curve

crosses 0 or 1?
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Fully-skewed values, i.e. where p(shall) = zero or 1, obtain zero-width intervals, highlighted in

bold in Column A. However an interval of zero width represents complete certainty. We cannot say

on the basis of a single observation that it is certain that all similarly-sampled speakers in 1958 used

shall in place of will in first person declarative contexts! Secondly, Column C provides two

examples (1960, 1970) of overshoot, where the upper bound of the interval exceeds the range

[0, 1]. Again, as Figure 2 illustrates, any part of an interval outside the probabilistic range simply

cannot be obtained, indicating that the interval is miscalculated. To illustrate this we plot Table 1

data in Figure 3.

Common statistical advice (the ‘3-sigma rule’) outlaws extreme values and requires p ± 3s ∈ [0, 1]

before employing the Wald interval. Some 99.7% of the Normal distribution is within 3 standard

deviations of the mean. However this rule has the effect that we simply give up estimating the error

Year shall will Total n p(shall) A: zα/2.s B: e
–

C: e
+

D: w
–

E: w
+

1958 1 0 1 1.0000 0.0000 1.0000 1.0000 0.2065 1.0000

1959 1 0 1 1.0000 0.0000 1.0000 1.0000 0.2065 1.0000

1960 5 1 6 0.8333 0.2982 0.5351 1.1315 0.4365 0.9699

1961 7 8 15 0.4667 0.2525 0.2142 0.7191 0.2481 0.6988

1963 0 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.7935

1964 6 0 6 1.0000 0.0000 1.0000 1.0000 0.6097 1.0000

1965 3 4 7 0.4286 0.3666 0.0620 0.7952 0.1582 0.7495

1966 7 6 13 0.5385 0.2710 0.2675 0.8095 0.2914 0.7679

1967 3 0 3 1.0000 0.0000 1.0000 1.0000 0.4385 1.0000

1969 2 2 4 0.5000 0.4900 0.0100 0.9900 0.1500 0.8500

1970 3 1 4 0.7500 0.4243 0.3257 1.1743 0.3006 0.9544

1971 12 6 18 0.6667 0.2178 0.4489 0.8844 0.4375 0.8372

1972 2 2 4 0.5000 0.4900 0.0100 0.9900 0.1500 0.8500

1973 3 0 3 1.0000 0.0000 1.0000 1.0000 0.4385 1.0000

1974 12 8 20 0.6000 0.2147 0.3853 0.8147 0.3866 0.7812

1975 26 23 49 0.5306 0.1397 0.3909 0.6703 0.3938 0.6630

1976 11 7 18 0.6111 0.2252 0.3859 0.8363 0.3862 0.7969

1990 5 8 13 0.3846 0.2645 0.1202 0.6491 0.1771 0.6448

1991 23 36 59 0.3898 0.1244 0.2654 0.5143 0.2758 0.5173

1992 8 8 16 0.5000 0.2450 0.2550 0.7450 0.2800 0.7200

Table 1. Alternation of first person declarative modal shall vs. will over recent time, data from

the spoken DCPSE corpus (after Aarts et al. 2013).

0.0

0.2

0.4

0.6

0.8

1.0

1955 1960 1965 1970 1975 1980 1985 1990 1995

p(shall | {shall, will})

overshootzero-width
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Figure 3. Plot of p(shall) over time, data from Table 1, with 95% Wald intervals, illustrating

overshoot (dotted lines), zero-width intervals (circles), and 3-sigma rule failures (empty points).
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for low or high p values or for small n – which is hardly satisfactory! Fewer than half the values of

p(shall) in Table 1 satisfy this rule (the empty points in Figure 3). Needless to say, when it comes to

line-fitting or other less explicit uses of this estimate, such limits tend to be forgotten.

A similar heuristic for the χ2
 test (the Cochran rule) avoids employing the test where expected cell

values fall below 5. This has proved so unsatisfactory that a series of statisticians have proposed

competing alternatives to the chi-square test such as the log-likelihood test, in a series of attempts to

cope with low frequencies and skewed datasets. In this paper we distinguish two mathematical

problems with the Wald interval – that it incorrectly characterises the interval about p and that it

fails to correct for continuity – and then evaluate competing test methods by a combination of

plotting limits and exhaustive computation.

2.2 Wilson’s score interval

The key problem with the conventional Wald definition is that the confidence interval is incorrectly

characterised. Note how we assumed that the interval about p was Binomial and could be

approximated by the Normal distribution. This is the wrong way to think about the problem, but it is

such a common error that it needs to be addressed.

The correct characterisation is a little counter-intuitive, but it can be summarised as follows.

Imagine a true population probability, which we will call P. This is the actual value in the

population. Observations about P will be distributed according to the Binomial. We don’t know

precisely what P is, but we can try to observe it indirectly, by sampling the population.

Given an observation p, there are, potentially, two values of P which would place p at the outermost

limits of a confidence interval about P. See Figure 4. What we can do, therefore, is search for

values of P which satisfy the formula used to characterise the Normal approximation to the

Binomial about P.
2
 Now we have the following definitions:

population mean µ ≡ P,

population standard deviation σ ≡ nPP /)1( − , (2)

population confidence interval (E
–
, E

+
) ≡ (P – zα/2.σ, P + zα/2.σ).

The formulae are the same as (1) but the symbols have changed. The symbols µ and σ, referring to

the population mean and standard deviation respectively, are commonly used. This population

confidence interval identifies two limit cases where p = P ± zα/2.σ.

Consider now the confidence interval around the sample observation p. We don’t know P in the

above, so we can’t calculate this imagined population confidence interval. It is a theoretical

concept!

However the following interval equality principle must hold, where e
– 

and e
+
 are the lower and

upper bounds of a sample interval for any error level α:

e
–
 = P1  ↔  E1

+ 
= p  where P1 < p, and

e
+
 = P2  ↔  E2

–
 = p  where P2 > p. (3)

If the lower bound for p (labelled e
–
) is a possible population mean P1, then the upper bound of P1

would be p, and vice-versa. Since we have formulae for the upper and lower intervals of a

population confidence interval, we can attempt to find values for P1 and P2 which satisfy p = E1
+ 

=

                                                
2
 In other words, we employ a computer program which estimates P, tests it, uses the resulting discrepancy between the

test result and the optimum to improve the estimate, and repeat until this deviation is infinitesimal. There are a number

of possible formulae for calculating the interval that can be slotted into this procedure, but we will come to this later.
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P1 + zα/2.σ1 and p = E2
– 

= P2 – zα/2.σ2. With a computer we can perform a search process to converge

on the correct values.

The formula for the population confidence interval above is a Normal z interval about the

population probability P. This interval can be used to carry out the z test for the population

probability. This test is equivalent to the 2 × 1 goodness of fit χ2
 test, which is a test where the

population probability is simply the expected probability P = E/n.

Fortunately, rather than performing a computational search process, it turns out that there is a

simple method for directly calculating the sample interval about p. This interval is called the

Wilson score interval (Wilson, 1927) and may be written as

Wilson score interval (w
–
, w

+
) ≡ 








+


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The score interval can be broken down into two parts on either side of the plus/minus (‘±’) sign:

1) a relocated centre estimate p' = 



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2) a corrected standard deviation s' = 
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2
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)1(
,

such that w
–
 = p' – zα/2.s' and w

+
 = p' + zα/2.s'.

3
 We will use lower case w to refer to the Wilson

interval.

The 2 × 1 goodness of fit χ2 
test checks for the sample probability falling within Gaussian intervals

on the population distribution, i.e. E
– 

< p < E
+
. This obtains the same result as testing the population

probability within the sample confidence intervals, w
–
 < P < w

+
. We find that where P = w

–
, p = E

+
,

which is sketched in Figure 4. As the diagram indicates, whereas the Normal distribution is

symmetric, the Wilson interval is asymmetric (unless p = 0.5).

Employing the Wilson interval on a sample

probability does not itself improve on this χ
2
 test. It

obtains exactly the same result by approaching the

problem from p rather than P. The improvement is

in estimating the confidence interval around p!

If we return to Table 1 we can now plot confidence

intervals on first person p(shall) over time, using the

upper and lower Wilson score interval bounds in

Columns D and E. Figure 5 depicts the same data.

Previously zero-width intervals have a large width –

as one would expect, they represent highly uncertain

observations rather than certain ones – in some

instances, extending nearly 80% of the probabilistic

range. The overshooting 1960 and 1970 datapoints

in Figure 3 fall within the probability range. 1969

and 1972, which extended over nearly the entire

                                                
3
 One alternative proposal, termed the Agresti-Coull interval (Brown et al. 2001) employs the adjusted Wilson centre p'

and then substitutes it for p into the Wald standard deviation s (see Equation 1). We do not consider this interval here,

whose merits primarily concern ease of presentation. Its performance is inferior to the Wilson interval.

Wilson  p

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6 n

P  Normal

w
–

E
+

sample

(observed)

population

(notional)

Figure 4. The interval equality principle

with Normal and Wilson intervals: the lower

bound for p is P.
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range, have shrunk.

How do these intervals compare overall? As we have seen, the Wilson interval is asymmetric. In

Equation 4, the centre-point, p', is pushed towards the centre of the probability range. In addition,

the total width of the interval is 2zα/2.s' (i.e. proportional to s'). We compare s and s' by plotting

across p for different values of sample size n in Figure 6. Note that the Wilson deviation s' never

reaches zero for low or high p, whereas the Gaussian deviation always converges to zero at

extremes (hence the zero-width interval behaviour). The differences between curves reduces with

increasing n (lower) but this problem of extreme values

continues to afflict Wald intervals.
4

2.3 The ‘exact’ Binomial interval

So far we have employed the Normal approximation to the

Binomial distribution, and contrasted Wald and Wilson

methods. To evaluate formulae against an ideal distribution

we need a baseline. We need to calculate P values from first

principles. To do this we use the Binomial formula. Recall

from Figure 1 that the Binomial distribution is a discrete

distribution, i.e. it can be expressed as a finite series of

probability values for different values of x = {0, 1, 2, 3,… n}.

We will consider the lower bound of p, i.e. where P < p (as in

Figure 4). There are two interval boundaries on each

probability, but the argument is symmetric: we could apply

the same calculation substituting q = 1 – p, etc. in what

follows.

Consider a coin-tossing experiment where we toss a weighted

coin n times and obtain r heads (sometimes called ‘Bernoulli

trials’). The coin has a weight P, i.e. the true value in the

population of obtaining a head is P, and the probability of a

                                                
4
 Newcombe (1998a) evaluates these and a number of other intervals (including the Clopper-Pearson ‘exact’ Binomial

calculation (4), and employing continuity corrections to Normal and Wilson intervals, which we discuss in the

following sections). The Wilson statistic without correction performs extremely well even when compared with exact

methods. He concludes that the Normal interval (1) should be abandoned in favour of the Wilson (3).
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Figure 6. Wald and Wilson

standard deviations s, s' for

p ∈ [0, 1].
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Figure 5. Plot of p(shall) over time, data from Table 1, with 95% Wilson score confidence intervals

(after Aarts et al. 2013).
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tail is (1 – P). The coin may be biased, so P need not be 0.5!

The population Binomial distribution of r heads out of n tosses of a coin with weight P is defined in

terms of a series of discrete probabilities for r, where the height of each column is defined by the

following expression (Sheskin, 1997: 115):

Binomial probability B(r; n, P) ≡ )()1(. rnr PPnCr −− . (5)

This formula consists of two components: the Binomial combinatorial nCr (i.e. how many ways one

can obtain r heads out of n tosses)
5
, and the probability of each single pattern of r heads and (n – r)

tails appearing, based on the probability of a head being P.

The total area of Binomial columns from x1 to x2 inclusive is then:

Cumulative Binomial probability B(x1, x2; n, P) ≡∑
=

2

1

),;(
x

xr

PnrB  = )()1(.
2

1

rn

x

xr

r
PPnCr

−

=

−∑ .(6)

However, this formula assumes we know P. We want to find an exact upper bound for p = x/n at a

given error level α. The Clopper-Pearson method employs a computational search procedure to sum

the upper tail from x to n to find P where the following

holds:

B(x, n; n, P) = α/2. (7)

This obtains an exact result for any integer x. The

computer modifies the value for P until the formula for

the remaining ‘tail’ area under the curve converges on

the required value, α/2. We then report P.
6

Note how this method is consistent with the idea of a

confidence interval on an observation p: to identify a

point P, sufficiently distant from p for p to be

considered just significantly different from P at the

level α/2. As in section 2.2, we do not know the true

population value P but we expect that data would be

Binomially distributed around it.

Figure 7 shows the result of computing the lower

bound for p = P employing this Binomial formula. We

also plot the Wilson formula, with and without an

adjustment termed a ‘continuity correction’, which we

will discuss in the next section. As we have noted, the

Wilson formula for p is equivalent to a 2 × 1 goodness

of fit χ2
 based on P. The continuity-corrected formula

is similarly equivalent to Yates’ 2 × 1 χ2
.

All three methods obtain lower confidence intervals on

p which tend towards zero at x = 0, but do not converge

to zero at x = n. Even with a tiny sample, n = 5, the

continuity-corrected Wilson interval is very close to the

                                                
5
 There is only 1 way of obtaining all heads (HHHHHH), but 6 different patterns give 1 tail and 5 heads, etc. The

expression nCr = n! / {r! (n – r)!}, where ‘!’ refers to the factorial.
6
 This method is Newcombe (1998a)’s method 5 using exact Binomial tail areas. In Figure 6 we estimate the interval for

the mean p by summing B(0, r; n, p) < α/2.
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‘exact’ population Binomial obtained using the search procedure, but it is much easier to calculate.

Recall that the argument we are using is symmetric. The dotted line at the top of Figure 7 is the

upper bound for the exact population Binomial interval, which flips this around. At the extremes are

highly skewed intervals, as we expected.

What happens if we use the naïve Wald interval? Figure 8 shows the effect of incorrectly

characterising the interval about p. The axes, n and p, are more-or-less swapped. The intervals tend

towards zero at x = n but are very large (and become negative) for small x.
7

2.4 Continuity correction and log-likelihood

We have addressed the major conceptual problem that the sample probability should not be treated

as the centre of a Binomial distribution. However we have also seen that for small sample size n, the

Wilson interval underestimates the error compared to the Binomial interval.

We can predict, therefore, that the corresponding uncorrected χ2
 test may find some results

‘significant’ which would not be deemed significant if the exact Binomial test was performed. The

area between the two curves in Figure 7 represents this tendency to make so-called ‘Type I’ errors –

where results are incorrectly stated as ‘significant’ (see section 3).

We can now consider a couple of common alternative contingency tests against the exact Binomial

population probability. In particular we have Yates’ χ2
 test and the log-likelihood test (Equation

10), both of which have been posited as improvements on χ2
. Yates’ formula for χ2

 introduces a

continuity correction term which subtracts 0.5 from each squared term:

Yates’ χ2
 ≡ ∑

−−

E

EO
2)5.0(

, (8)

where O and E represent observed and expected distributions respectively. In our 2 × 1 case we

have O = {np, n(1 – p)} and E = {nP, n(1 – P)}. Employing a search procedure on Yates’ χ2
 test

(i.e. converging to the critical value χ2
α) converges to one or other bound of the continuity-corrected

Wilson interval (Newcombe 1998a), which may be calculated using Equation 9 below. We have

already seen in Figure 7 the improved performance that this obtains.

w
– ≡ )

)(2

}1)24()1(4{2
,0max(

2

2/

12

2/2/

2

2/

α

ααα

+

+−+−+−−+

zn

ppnpzzznp
n

, and

w
+ ≡ )

)(2

}1)24()1(4{2
,1min(

2

2/

12

2/2/

2

2/

α

ααα

+

+−−−+−++

zn

ppnpzzznp
n

. (9)

We can also employ a search procedure to find expected values for other χ
2
-distributed formulae. In

particular we are interested in log-likelihood (G
2
), which is frequently claimed as an improvement

on goodness of fit χ
2
. The most common form of this function is given as

log-likelihood G
2
 ≡ ∑ 









E

O
O ln2 , (10)

where ln is the natural logarithm function, and any term where O or E = 0 simply returns zero.

Again we can obtain an interval by employing a search method to find the limit G
2 → χ2

α.

                                                
7
 The Binomial ‘curve’ for p in Figure 8 is discrete – it consists of rationals r/n – and conservative, because the sum is

less than α/2 rather than exactly equal to it.
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Figure 9 shows that log-likelihood matches the

Binomial P more closely than χ2
 for r ≤ 3, n = 5 and

α = 0.05, which may explain why some researchers

such as Dunning (1993) have (incorrectly) claimed its

superiority. However it is less successful than

uncorrected χ2
 overall. In any event, it is clearly

inferior to Yates’ χ2
 (cf. Figure 7 and Table 2).

3. Evaluating confidence intervals

Thus far we have simply compared the behaviour of

the interval lower bound over values of x. This tells us

that different methods obtain different results, but does

not really inform us about the scale of these

discrepancies and their effect on empirical research.

To address this question we need to consider other

methods of evaluation.

3.1 Measuring error

Statistical procedures should be evaluated in terms of the rate of two distinct types of error:

• Type I errors, or false positives: this is so-called ‘anti-conservative’ behaviour, i.e. rejecting

null hypotheses which should not have been rejected, and

• Type II errors, or false negatives: ‘conservative’ behaviour, i.e. retaining null hypotheses

unnecessarily.

It is customary to treat these errors separately because the consequences of rejecting and retaining a

null hypothesis are qualitatively distinct. In experiments, researchers should err on the side of

caution and risk Type II errors.

To estimate the performance of a different lower bound estimate for any value of x and n we can

simply substitute it for P in the cumulative Binomial function (4). This obtains the error term ε
representing the erroneous area relative to the correct tail B (Figure 10):

ε = B(x, n; n, P) – α/2, (11)

where B(x, n; n, P) is the upper ‘tail’ of the interval from x to n if the true value was P, and α/2 is

the desired tail. This is a consequence of the interval

equality principle (2).

We plot the Binomial tail area B over values of x in

Appendix 1. To calculate the overall rate of an error

we perform a weighted sum because the prior

probability of P being less than p depends on p (so

when p = 0, P cannot be less than p):

Type I error εI = 
2/)1(

)0,min(

+

ε∑
nn

x x
 and

Type II error εII = 
2/)1(

)0,min(

+

ε−∑
nn

x x
. (12)
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3.2 Evaluating 2 × 1 tests and simple confidence intervals

Table 2 summarises the result of obtaining figures for population-centred distributions based on

different formulae for n = 5 and α = 0.05. These P values may be found by search procedures based

on p and critical values of χ
2
, or, as previously noted, substituting the relevant Wilson formula.

Table 2 shows that overall, log-likelihood is inferior to Yates’ χ
2
 for small r, because the lower

bound has a large number of Type I errors as r approaches n (see also Appendix 1).

With n = 5, Yates’ χ
2
 underestimates the lower bound (and therefore the interval) on approximately

0.8% of occasions. Consequently, although we set α = 0.05, we have an effective level of α = 0.058.

This error falls to 0.14% for n = 50. Yates’ formula can exceed the Binomial interval at x = n,

obtaining Type II errors, as Figure 5 observes, although this effect is minor.

These results reinforce the point that it is valuable to employ continuity-corrected formulae, and

that this type of interval estimation is robust. As we might expect, as n increases, the effect of (and

need for) this correction reduces. However, this still leaves the question as to what happens at

extremes of p. Figure 11 plots lower interval measures at extremes for n = 50.

• Low p, lower bound (= high p, upper bound): Log-likelihood and Yates’ χ2
 tests perform well.

The optimum interval is the corrected Wilson interval.

• High p, lower bound (= low p, upper bound): The standard goodness of fit χ2
 converges to the

Binomial, and the optimum interval appears to be the uncorrected Wilson interval.

Even with large n, the Wald confidence interval is not reliable at probability extremes. Log-

likelihood performs quite well for the lower bound of small p (Figure 11, left), but poorly for high p

(i.e. the upper bound for small p, right). The rate of Type I errors for standard χ2
, Yates’ χ2

 and log-

r p Binomial χ
2

Yates’ G
2

0 0.0000 0.0000 0.0000 0.0000 0.0000

1 0.2000 0.0050 0.0362 0.0105 0.0126

2 0.4000 0.0528 0.1176 0.0726 0.0807

3 0.6000 0.1466 0.2307 0.1704 0.1991

4 0.8000 0.2836 0.3755 0.2988 0.3718

5 1.0000 0.4782 0.5655 0.4629 0.6810

Error rates: Type I 0.0554 0.0084 0.0646

Type II 0.0000 0.0012 0.0000

Table 2. Lower bounds for Binomial, χ
2
, Yates’ χ

2
 and log-likelihood G

2
 (n=5, α=0.05).
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Figure 11. Plotting lower bound error estimates for extremes of p, n = 50, α = 0.05.
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likelihood are 0.0095, 0.0014 and 0.0183 respectively, maintaining the same performance

distinctions we found for small n. Yates’ χ2
 has a Type II error rate of

 
0.0034, a three-fold increase

from n = 5. In section 4.2 we evaluate intervals against the exact Binomial for n = 1 to 100 (see

Figure 15) counting errors assuming intervals are independent. This confirms the pattern identified

above.

4. Evaluating 2 × 2 tests

So far we have evaluated the performance of confidence intervals for a single proportion, equivalent

to the 2 × 1 χ2
 test. We next consider the performance of confidence intervals in combination.

In order to exhaustively evaluate 2 × 2 tests we will use the following ‘practitioner strategy’. We

wish to know how many times each test will obtain a different result to a baseline test, and

distinguish Type I and II errors. We will permute tables in both dimensions (i.e. we try every

pattern possible) and count up each discrepancy.

We will use the notation in Table 2 to elaborate what follows. The idea is that the table represents

four observed cell values a, b, c and d, which can also be considered as probabilities p1 and p2 in

each row, out of row totals n1 and n2.

IV ↓ DV → Column 1 Column 2 Row sums Probabilities

Row 1 a b n1 = a + b p1 = a/(a + b)

Row 2 c d n2 = c + d p2 = c/(c + d)

Column sums a + c b + d n = a+b+c+d

Table 3. 2 × 2 table and notation.

Although this distinction is rarely drawn, at the level of precision we can divide 2 × 2 tests into two

different sub-tests: those where each probability is obtained from samples drawn from the same

population (section 4.1) and from independent populations (4.2). Appendix 2 compares the

performance of these baseline tests.

4.1 Evaluating 2 × 2 tests against Fisher’s test

Fisher’s exact test (Sheskin 1997: 221) uses a combinatorial approach to compute the exact

probability of a particular observed 2 × 2 table occurring by chance.

pFisher(a, b, c, d) = 
!!!!!

)!()!()!()!(

dcban

dcbadbca ++++
 (13)

where a, b, c, and d represent the values in the 2 × 2 table (Table 3) and n = a+b+c+d. The

resulting probability pFisher is the chance of the particular pattern occurring. A χ2
 test, on the other

hand, tests whether the observed pattern or a more extreme pattern is likely to have occurred by

chance. To compute an equivalent Fisher-based test we need to perform a summation over these

patterns, in the following form:

pFSum(a, b, c, d) = 

otherwise),,,(

if),,,(

),min(

0

),min(

0

∑

∑

=

++
=

−++−

>+−−+

da

i

Fisher

dc

c

ba

a

cb

i

Fisher

idicibiap

idicibiap

 (14)

Sheskin notes that the Fisher test assumes that “both the row and column sums are predetermined

by the researcher.” Both column totals a + b and c + d, and row totals a + c and b + d, are constant,

thereby legitimating this summation.
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In ex post facto corpus analysis, this corresponds to a situation where samples are taken from the

same population and the independent variable (as well as the dependent variable) represents a free

choice by the speaker. This is a within-subjects design, where either value of the independent

variable (IV) may be uttered by the same speaker or appear in the same source text. Alternative

tests are the 2 × 2 χ2
 test (including Yates’ test) and log-likelihood test. These tests can be translated

into confidence intervals on the difference between p1 and p2 (Wallis forthcoming).

We may objectively evaluate tests by identifying Type I and II errors for conditions where the tests

do not agree with the result obtained by Fisher’s sum test. Figure 12 plots a map of all tables of the

form [[a, b] [c, d]] for all integer values of a, b, c, d where n1 = a + b = 20 and n2 = c + d = 20. We

can see that in both cases, there are slightly more errors generated by G
2
 than χ2

, and Yates’ χ2
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G
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Type I I

Figure 12. Evaluating χ2
, Yates’ χ2

, and log-likelihood G
2
 against Fisher’s sum for error levels

α = 0.05 (left) and α = 0.01 (right). The area outside the curve is considered significant by all tests,

only discrepancies are marked.
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Figure 13. Error rates against Fisher’s test, α = 0.05. Lower, for n1 = n2; upper, for n1 = 5n2.

Errors are Type I (where the test is insufficiently cautious) unless otherwise indicated.



Binomial confidence intervals and contingency tests  - 13 - Sean Wallis

performs best of all.

To see what happens to the error rate as n increases, we evaluate tables for a given α and plot the

error rate. The lower graph in Figure 13 plots error rates for evenly balanced patterns (n1 = n2) up to

100, testing 174,275 unique points. Yates’ test has the lowest overall discrepancies, and these are

solely Type II errors. The jagged nature of each line is due to the fact that each table consists of a

discrete matrix, but the interval estimators are continuous.

This evaluation assumes that both row totals are the same. To guard against this constraint being

artificial, we repeat for values of n1 = 5n2, testing a further 871,375 unique points. This obtains the

smoother upper graph in the same figure. We can also see that in this condition, Yates’ test may

now obtain Type I errors and the independent population z test some Type II errors. The overall

performance ranking does not change however. Note that for Yates, most cases where the row total

n < 10 obtains fewer than 5% errors (and these are almost all Type II). The Cochran rule (use

Fisher’s test with any expected cell below 5) may be relaxed with Yates’ test.

4.2 Evaluating 2 × 2 tests against paired exact Binomial test

If the independent variable is a sociolinguistic choice, e.g. between different subcorpora, text

genres, speaker genders, etc., then we have a ‘between-subjects’ design. In this case Fisher’s

method (and the 2 × 2 χ2
 test) is strictly inappropriate. Instead, we should employ tests for two

independent proportions taken from independent populations. These tests include the z test for

two independent population proportions (Sheskin 1997: 229) and employing Newcombe’s Wilson-

based interval in tests (Newcombe 1998b: intervals 10 and 11).

These tests compare the difference in observed probabilities p1 and p2 with a combined interval. To
obtain this interval we first employ p1 = a/n1 and p2 = c/n2, where n1 = a + b and n2 = c + d

(Table 3). The baseline interval for comparison is obtained from P1 and P2 satisfying the exact
Binomial formula (Equation 7), where x = a, c, and n = n1, n2 respectively. The interval is then
combined by the following formula:

Bienaymé interval = 2

22

2

11 )()( pPpP −+−  , (15)

where P1 and P2 represent the extreme values of the inner interval (i.e. if p1 > p2, P1 is the lower

bound of p1).
8
 This test is slightly less conservative than Fisher’s (see Appendix 2).

To combine other intervals (Wald z, Wilson, etc.) we also employ Equation 15, substituting the

relevant inner interval points for P1 and P2. The Newcombe-Wilson interval is computed by

applying Equation 15 to Equation 4, substituting w1
–
 for P1 and w1

+
 for P2 if p1 > p2. Alternatively,

to include a continuity correction, we employ Equations 15 and 9.

Consider the data in Table 1. As it stands, it obtains too great a scatter for any clear trend to be

identified, even after we employ Wilson intervals (Figure 5). However, we can improve this picture

by simply summing frequency data in five-year periods (indicated by dashed lines in Table 1).

Figure 14 plots this data with Wilson score intervals.

Note that this Newcombe-Wilson interval can be turned into a significance test by simply testing if

the difference between p1 and p2 is greater than this interval.
9
 In this case p1 and p2 are significantly

different at the 0.05 level: p1 – p2 = 0.1687 is greater than the inner interval (0.1468).

                                                
8
 Equation 15 is the Bienaymé formula or Pythagorean sum of two vectors, employed to combine standard deviations of

independent freely-varying variables. See also section 2.6 in Wallis (forthcoming).
9
 As a practical heuristic, when presented with a graph like that in Figure 14, if two intervals overlap so that one interval

includes the other point, there can be no significant difference between them, and if they do not overlap at all, they must

be significantly different. Only if they partially overlap, as p1 and p2 do in this example, is it necessary to apply a test.
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Given this common derivation, we would anticipate that this second pairwise comparison will

obtain comparable results to the evaluation of intervals for the single proportion discussed in section

3. Figure 15 plots the result of comparing Newcombe-Wilson tests, with and without continuity

correction, and for good measure, the log-likelihood test, against the paired Binomial test. This

shows that of these tests, the continuity-corrected Newcombe-Wilson test seems to perform the

most reliably. This observation is borne out by Figure 16, showing performance as n increases.

Sample error rates for n1, n2 = 20 are summarised in Table 4. Yates’ test may be used, and is

slightly conservative, whereas the independent population z test for two independent proportions,

which employs the erroneous Gaussian distribution about p1 and p2, performs the least successfully.

Finally we evaluate the performance of these tests over a broad range of values. Figure 16 contains

two graphs. The lower graph plots error rates where n1 = n2 from 1 to 100; the upper graph sets n1 at

0.0
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+
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Figure 14. Plot of p(shall) over time, aggregated data from Table 1 with 95% Wilson intervals. To

compare p1 and p2 we compute a difference interval based on the inner interval (indicated).

Yates’ χ2 z NW NW c.c. G
2

α 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01 0.05 0.01

Type I 8.5% 8.5% 4% 5% 1% 1% 6% 7%

Type II 4% 4%

Table 4. Errors obtained by different tests against the paired exact Binomial test (n1, n2 = 20).
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log-likelihood G
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, against a difference test computed using the ‘exact’ Binomial interval, for error

levels α = 0.05 (left) and α = 0.01 (right).
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5 × n2. We can see that the continuity-corrected Newcombe-Wilson test outperforms Yates’ test in

both conditions once the smaller sample n2 > 15. The resulting order (z < G
2
 < Wilson < Wilson

c.c.) confirms our conclusions regarding the single interval in section 3, and we have also been able

to include standard χ2
 tests in our evaluation.

5. Conclusions

This paper has concerned itself with evaluating the performance of a number of fundamental

approaches to estimating significant difference. The optimum methods approximate the Normal to

the Binomial distribution itself (in the standard 2 × 2 χ2
 test, with or without continuity correction)

or the Wilson to the inverse of the Binomial (in other cases). This analysis has implications for the

estimation of confidence intervals and the performing of significance tests.

Confidence intervals are valuable methods for visualising uncertainty of observations, but are

under-utilised in linguistics, possibly because they are not well understood. The Wilson score

interval, which was ‘rediscovered’ in the 1980s, deserves to be much better known, because, as

Figure 5 demonstrates, it allows us to robustly depict uncertainty across all values of observed

probability p even when n = 1. Researchers struggling with a Wald interval overshooting the

probability range can simply substitute the correct Wilson interval.
10

The underlying model assumes that observations are free to vary, so p can range from 0 to 1.

Provided that linguistic data can be presented in terms of the rate of a form against its alternates (as

opposed to a per-million-word estimate, where p cannot conceivably approach 1), the Wilson

interval provides a robust and effective means for estimating intervals.

                                                
10

 For citation purposes it has become de rigeur in medical statistics (among others) to cite confidence intervals rather

than exact values. We recommend quoting p and bounds w
–
 and w

+
 in tables and plotting the observation p with the

corrected Wilson interval in graphs. (For plotting p in Excel it is useful to use Y
+
 = w

+
 – p and Y

–
 = p – w

–
.)
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We have demonstrated that the common assumption that the confidence interval around a sample

observation is Normal (Gaussian) is both incorrect and inaccurate.

1. The sample confidence interval is correctly understood as a ‘reflection’ of a theoretical

interval about the true value in the population, and as a result can be highly skewed. The fact

that P is Binomially distributed does not imply that the interval about p is Binomial. This

means we should dispense with ‘Wald’ type approaches to confidence interval estimation,

and substitute Wilson-based approaches.

2. The most accurate approximation to the Binomial population confidence interval we have

discussed involves a continuity correction, i.e. the z population interval with continuity

correction or Yates’ χ
2
.

Consequently the most accurate estimate of the single sample confidence interval about an

observation p that we have examined is the Wilson score interval with continuity correction. This

interval can be turned into a simple significance test (see Wallis forthcoming) by simply introducing

a test value P and testing the difference (p – P) against this interval. This test performs identically to

Yates’ corrected 2 × 1 goodness of fit test, which is based on assuming a Normal interval about P.

The log-likelihood test does not improve performance for small samples or skewed values, indeed,

it underperforms compared to the uncorrected χ
2
 test (and the Wilson interval).

Our results mirror those of Newcombe (1998a: 868), who, by testing against a large computer-

generated random sample, found in practice some 95.35% sample points within the uncorrected

95% Wilson confidence interval. Other evaluations of confidence intervals (e.g. Brown et al. 2001)

obtain comparable results.

Having said that, a third potential source of error is the following. The limit of the Binomial

distribution for skewed p as n tends to infinity (i.e. p → 0, n → ∝) is the Poisson rather than

Normal distribution. Whereas the Wilson interval is obtained by solving to find roots of the Normal

approximation (i.e. algebraically finding values satisfying P for observation p), it seems logical that

a better approximation in these cases would tend to reflect the Poisson. Obtaining such an interval is

however, beyond the current paper, where we have been content to evaluate existing methods.

We next turn to difference intervals, which can also be conceived as 2 × 2 tests. At this level of

precision, we should distinguish between same- and different-population tests. This distinction is

rarely noted in non-specialist texts (Sheskin (1997) notes it in passing) probably because the

practical differences are small. However these differences do exist, as Appendix 2 demonstrates.

For ex post facto corpus research we may simply distinguish between lexico-grammatical

independent variables representing choices of speakers/writers in the same text (same population)

and sociolinguistic independent variables dividing speakers into groups (independent populations).

The same between-subject and within-subject principle applies to lab research. If the same speaker

or writer can be found in either value of the independent variable, then variation can be in both

directions (IV and DV) which is consistent with Fisher’s test. Alternatively if the independent

variable partitions speakers, then variation can only be found separately within each dependent

variable, which is consistent with combining the results from two ‘exact’ Binomial tests.

We decided to evaluate performance by simply comparing each method against these two baseline

tests. Our reasoning was simple: as Fisher or the exact Binomial represent optimal tests, what

matters in practice is the probability that any other method obtains a different result, either due to

Type I errors (informally, “incorrectly significant”) or Type II errors (“incorrectly non-significant”).

We employed an exhaustive comparison of all 2 × 2 test permutations where n1 = n2 and n1 = 5n2

with n2 rising to 100, for an error level α = 0.05.
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We found that the optimum tests were Yates’ test (when data is drawn from the same population)

and the Newcombe-Wilson test with continuity correction (for data drawn from independent

populations). Yates’ test can also be used in the latter condition, and is advisable if the smaller

sample size (row total) is 15 or below.

It is worth noting that the corresponding z test suggested by Sheskin (1997) performs poorly

because it generalises from the Wald interval. Log-likelihood also performs poorly in all cases,

despite its adherents (e.g. Dunning 1993) whose observations appear premised on only the lower

part of the interval range. Our results are consistent with Newcombe (1998b) who uses a different

evaluation method and identifies that the tested Newcombe-Wilson inner (‘mesial’) interval is

reliable.

Finally, the Bienaymé formula (15) may also be employed to make another useful generalisation. In

Wallis (2011) we derive a set of “meta-tests” that allow us to evaluate whether the results of two

structurally identical experiments performed on different data sets are significantly different from

one another. This allows researchers to compare results obtained with different data sets or corpora,

compare results under different experimental conditions, etc. Meta-testing has also been used to

pool results which may be individually insignificant but are legitimate to consolidate.

Our approach is superior to comparing effect size numerically or making the common logical error

of inferring that, e.g., because one result is significant and another not, the first result is

‘significantly greater’ than the second. (Indeed, two individually non-significant test results may be

significantly different because observed variation is in opposite directions.)

The resulting meta-test is based on comparing the optimum sub-tests we evaluate in the present

work. On the principle that errors tend to propagate, we can expect those methods with the fewest

errors will also obtain the most reliable meta-tests. Although the Wald vs. Wilson interval ‘debate’

concerns so-called “simple statistics”, it is on such foundations that more complex methods are

built. Appropriately replacing Wald (and potentially, log-likelihood) error estimates with Wilson-

based estimates represents a straightforward step to improving the precision of a number of

stochastic methods.
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Appendix 1. Estimating errors from single interval curves

As noted in section 3, we employ Equation 11 to obtain an error rate B relative to the target value of

α/2 (here 0.025). Figure A1 plots this error rate, which we found by substituting the curve into the

Binomial function and calculated the resulting tail area for x > 0. The graphs plot the deviation from

the ideal value of these functions for a particular value of x (the straight line marked α/2).

Positive differences above the dotted line in Figure A1 therefore represent the probability of a

Type I error (accepting a false alternate hypothesis). Negative differences represent the chance of a

Type II error (retaining a false null hypothesis). The graphs tell us that if we know x (or p) we can

identify the functions that perform best at any point.

We need to aggregate these errors to obtain a single error rate. One way we could do this is to

simply take the arithmetic mean of each error. If we do this, log-likelihood appears to improve on

uncorrected χ2
, in the same ratio as the area under the curves in Figure A1. However, a simple

average assumes that the chance of each error occurring is constant for all values of x.

However, if you think about it, the probability of P being less than p is proportional to p! It is twice

as probable that P<p if p = 1 than if p = 0.5, and so on. Indeed, this is why we do not plot the error

for x = 0, because if p = 0, P cannot be less than p. Therefore to calculate the overall error we

employ a weighted average, with each term weighted by p or x, as in Equation 12.

Appendix 2. Fisher’s test and Binomial tests

In section 4 we draw a distinction between two types of 2 × 2 tests. The summed Fisher ‘exact’ test

(section 4.1) is computed by summing Fisher scores for more extreme values diagonally assuming

that row and column totals are constant (Equation 14). This is appropriate when both independent

and dependent variables are free to vary and samples are taken from the same population. The idea

0.00

0.05

0.10

0.15

0.20

0 1 2 3 4 n = 5

0.00

0.05

0.10

0.15

0.20

0 10 20 30 40 n = 50

Type I

Type II
α/2

Yates’ χ2

uncorrected χ2

log-likelihood G2

χ2

G2

Yates’ χ2

B

x

Figure A1. Binomial ‘tail’ area B for x from 0 to n, n = 5 and 50, α = 0.05. Error ε = B – α/2.
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is that if any utterance by any speaker could be accounted for in any cell in the table, then the

summation should be performed in both directions at the same time.

An alternative test using the same configuration is more appropriate when samples are taken from

different populations, and the independent variable is not free to vary. In this case we sum ‘exact’

Binomial (Clopper-Pearson) intervals (section 4.2) in one direction only: within each sample

(finding P for Equation 7), and then combine intervals assuming that variation is independent

(Equation 15).

We may compare the performance of the two tests by the same method as in section 6 of the paper:

identify table configurations where one test obtains a significant result and the other does not. For

n1 = n2 up to 100 and n1 = 5n2 we compare the results of tests in all possible configurations and

calculate the probability of both types of errors independently (here we are really discussing the

difference between two baseline tests, so ‘error’ is possibly a misleading term).

We find that the Fisher test is slightly more conservative than the paired Binomial test, which

makes sense when you consider that it is more constrained. Figure A2 plots the probability that the

independent population test obtains a significant result when the dependent sample (Fisher) does

not. There are no cases where Fisher’s test is less conservative than the paired Binomial.
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Figure A2. The effect of population independence: plotting the probability that the independent-

population test is significant in cases where the same-population test is not.


