The structure of this workshop

PART 1: Intro

- ◆ Introducing ICE-GB and ICECUP
 - The ICE-GB corpus, its structure and analysis
 - ICECUP, queries and FTFs
- ◆ Introduction to statistics and experimental design
 - Why should we do it? How do we do it? What does it mean?

PART 2: Group work

- Lexical and grammatical examples on a small data set
 - Exercise 1: sociolinguistics ⇒ grammar
 - Exercise 2: grammar ⇒ grammar
- ◆ Discussion of statistics over this data
 - Testing for significance Size of effect Problems
- ♦ Presentations of group work convince us!
 - Anticipating the devil's advocate
 - Developing a programme of research

Introducing ICE-GB and ICECUP

The British Component of the International Corpus of English

- ◆ Sampling
 - Spoken and written: 60% spoken 500 × 2,000-word texts = 1Mw
- ◆ Analysis scheme
 - Structural markup, tagging and parsing (based on Quirk et al. 1985)

The ICE Corpus Utility Program

- Software dedicated to exploring a parsed corpus
 - Three levels of browsing: overview text sentence
 - Search by sociolinguistic variable, text string or FTF
- ♦ Fuzzy Tree Fragments (FTFs)
 - An intuitive model-based grammatical query system
- ◆ Performing experiments with a parsed corpus
 - Sufficiently expressive for a huge range of experiments
 - Ask questions we could not consider before
 - No programming required...
 - ...but we still have to think...

Statistics and experimental design

- ♦ Why should we be interested in statistical argument?
 - A: To generalise evidence from a corpus to "Real Language"
- What is a scientific experiment?
 - A test of a hypothesis.
 - A hypothesis consists of an
 - independent variable (IV)
 - dependent variable (**DV**)
 - ie. Does the value of the IV have an effect on the value of the DV?
 - **Null hypothesis** = the prediction that there is no effect.
- ◆ An example
 - Q: Is "whom" used more often than "who" in written English?
 - **IV** = *genre* {spoken, written}, **DV** = *choice* {"whom", "who"}
- ♦ Note the use of *relative frequencies*:
 - "whom" vs. "who" given the choice
 - = A move away from frequency per thousand words...
 - What is the likelihood that the speaker says "whom"?

Statistics and experimental design (II)

- ◆ Absolute vs. relative frequencies
 - An absolute frequency can tell you how common a word is in the corpus. But the reason that it is there might depend on many irrelevant factors.
 - A relative frequency focuses on variation where there is a choice. It tells you how often the speaker or writer chooses to use one word over another. It lets us focus on a specific type of linguistic event.
- Specificity vs. generality
 - By defining the linguistic event broadly or narrowly, experiments can be specific or general.
 - General experiments invite devil advocacy
 - Specific experiments risk the "so what?" factor
 - Linguistic argument should define
 - what to look for and can you classify it?
 - how to relate it back to examples in the corpus
 - how the community debates the results
- Experiments must be defensible and reproducible

The one-slide experiment guide

- ◆ Choose IV and DV: does the IV predict the DV?
- ◆ Construct a contingency table (IV × DV) below
- ◆ Get data from the corpus using a series of queries
- ◆ Complete the table, including totals

		dependent variable				
		$\mathbf{DV} = x$	$\mathbf{DV} = y$	•••	TOTAL	
	IV = a	$a \wedge x$	$a \wedge y$		$a \wedge (x \vee y \vee)$	
independent	IV = b	$b \wedge x$	$b \wedge y$		$b \wedge (x \vee y \vee)$	
variable	•••					
	TOTAL	$(a \lor b \lor) \land x$	$(a \lor b \lor) \land y$		$(a \lor b \lor) \land (x \lor y \lor)$	
		observed			expected	

- Compare observed with expected results using a statistical test
 - for example (above) do speakers positively choose x?

Performing a statistical test

- χ^2 (chi-square)
 - cf. observed vs expected distributions:
 - Simple, specific value of DV: one obs. column (e.g. *who*)

• (bserved	0 =	specific	value	of	DV
-----	---------	-----	----------	-------	----	----

- Expected **E** = total value of DV, scaled down
- OR all values of DV: sum all columns
- Formula:

chi-square
$$\chi^2 = \sum \frac{(o-e)^2}{e}$$
 where $o \in \mathbf{O}$ and $e \in \mathbf{E}$.

- Test: is this greater than a threshold value $\chi^2_{\it crit}$?
- Critical values of χ^2 depend on
 - degrees of freedom df = r-1
 - or $(r-1) \times (c-1)$ where c = columns
 - probability of error
 - typically p = 0.05, 0.01

df	p = 0.05	p = 0.01
1	3.841	6.635
2	5.991	9.210
3	7.815	11.345
4	9.488	13.277
5	11.070	15.086

DV

TOTAL

200

100

300

expected E

whom

50

40

90

observed O

who

150

60

210

spoken

written

TOTAL

IV

A worked example

◆ Is a preference for *whom* affected by text category?

```
Observed \mathbf{O} = \{50, 40\}, scale factor SF = 90/300 = 0.3, expected \mathbf{E} = \{200 \times 0.3, 100 \times 0.3\} = \{60, 30\}. Chi-square \chi^2 = \Sigma(o-e)^2/e = 10^2/60 + 10^2/30 = \mathbf{5.000}. Chi-square critical value (df = 1, error level p = 0.05) = \chi^2_{crit}(1, 0.05) = 3.841.
```

- Since χ^2 > critical value, the result is significant
 - and the null hypothesis, i.e., that whom does not correlate with variation of text category, is rejected = YES
- How big is the result?
 - A quick measure is *percentage swing*:

```
• swing(dv, iv) = pr(dv \mid iv) - pr(dv)
swing(whom, written) = pr(whom \mid written) - pr(whom)
= 40/100 - 90/300 = +0.1
```

- ◆ Significance and size are not the same thing:
 - If you have enough data, small effects will be significant
 - Significance means it is probably reproduced in "Real Language"

Exercise 1: sociolinguistics ⇒ grammar

- ◆ Examples
 - Does speaker gender, age, role... affect the choice of a construction?
- ♦ Issues
 - Have we specified the null hypothesis correctly?
 - Have we listed all possible outcomes?
 - Are we really dealing with the same linguistic choice?
 - Do we have enough different speakers?
- ◆ Method, using ICE-GB and ICECUP
 - Enumerate outcomes and construct table
 - Complete the table by:
 - Creating an FTF for each grammatical outcome
 - Performing FTF queries
 - Dragging and dropping sociolinguistic contexts to combine values
 - Calculating the TOTAL column
 - Perform χ^2 and measure size of effect
- ♦ Justify your results through examples in the corpus

Exercise 2: grammar ⇒ grammar

- ◆ Examples
 - Does the 'mood' of a clause predict its transitivity?
 - How does one element within a clause or phrase affect another?
- ♦ Issues
 - We must specify the *case* (eg. the clause or phrase)
 - We have to consider unmarked cases, eg. with absent features
 - Do cases *interact* with one another (eg. an NP in an NP)?
 - ⇒ Use FTFs to establish the proportion of cases that are strictly independent
 - \Rightarrow Multiply total χ^2 by this proportion
 - Are the IV and DV measuring different aspects of the same thing?
- ♦ Method, using ICE-GB and ICECUP
 - Enumerate outcomes and construct table
 - Complete the table by:
 - Performing an FTF for each different cell
 - Calculating TOTAL or 'missing value' columns and rows
 - Perform χ^2 and measure size of effect, and test for case interaction.
- ♦ Justify your results through examples in the corpus

Now for the hard part: convincing others

- ♦ The seduction of numbers
 - But what do they mean?
 - An experimental result may give you evidence for an argument, but...
 - Is the argument the right one?
 - Lay out your method so that your reader can repeat your experiment.
 - Show examples from the corpus to make your point.

Advocating for the devil

- Correlations don't prove causes
 - There may be other explanations for the result, so anticipate your critics.
 - Is the result dependent on the particular grammar?
- Are sentences correctly and completely analysed?
 - No, but how serious is the problem?

And moving on:

- What future work is suggested by your results?
- Is it worth broadening or narrowing your set of cases?
- Testing your hypotheses against other corpora