Attenborough Opening K. Lonsdale Building

Kathleen Lonsdale Building Re-Opened by Sir David Attenborough.

Image: Sir David Attenborough with members of Earth Sciences Department.  View the image gallery of the event on UCL Flickr
More...

The BBC BluePlanet

Newly discovered ocean plankton named after BBC Blue Planet.

Although measuring only thousandths of a millimetre, these plankton play a pivotal role in marine ecosystems as a crucial source of food for many ocean dwelling organisms. They are also incredibly valuable for studying the impact of climate change on ocean life now and across the previous 220 million years.
The plankton – called coccolithophores – are single cells surrounded by a calcite shell that varies drastically in shape across different species, acting as armour against predators.
“Although microscopic, the plankton are so abundant that they are visible from space as swirling blooms in the surface oceans, and form our most iconic rocks with their calcite forms making up the bulk of the white chalk cliffs and downs of southern England,” explained study co-author Professor Paul Bown.
It is the ability to produce this calcite shell that is being disrupted through ocean acidification. Ocean acidification is a symptom of climate change whereby rising atmospheric carbon dioxide is absorbed by the ocean, increasing its acidity.
By studying fossilised plankton shells or ‘coccoliths’ in samples from drilling down deep into the ocean bed, scientists can map the impact of climate change and other global events over a very long period of time and use this to inform what might happen to in the future.

More...

News from the Earth Sciences

Bookmark and Share

Precambrian Research Group


The Precambrian is the informal name for the first 90% of Earth history during which life began its incredibly long journey towards biological complexity. 


This journey culminated in the appearance and diversification of animals between about 750 and 540 million years ago. Sedimentary rocks become increasingly scarce the further back in time one looks. For this reason, Precambrian studies are multidisciplinary by necessity, piecing together clues from a range of fields: geochemistry, palaeobiology, biochemistry, sedimentology, genetics and a range of earth system models (atmospheric, ocean circulation, climate and biogeochemical).

Our research group primarily uses the chemical, mineral and isotopic composition of sedimentary rocks to reconstruct earth system evolution during the two billion year interval from the end of the Archaean Eon (about 2500 million years ago) to the beginning of the Phanerozoic Eon (about 540 million years ago). During this Proterozoic Eon, extraordinary perturbations occurred to our planet’s surface environment. Some disturbances were extreme but transient, such as the ‘Snowball Earth’ intervals of global glaciation. Others caused irreversible changes that shaped the modern earth system, such as the ‘Great Oxidation Event’ and the ‘Neoproterozoic Oxygenation Event’ without which we would not be here today.