2014-nerc-earthquake

NERC Grant: The Seismic Cycle

Earthquakes are a very destructive and yet unpredictable manifestations of the Earth internal dynamics. They correspond to a rapid motion along geological faults, generating seismic waves as they propagate along the fault strands. The propagation of ruptures along faults induces dramatic stresses and deformation of the rocks hosting the fault, which become increasingly damaged (i.e, degraded) as multiple earthquakes occur along a fault over geological timescales. In turn, this damage of the off-fault rocks has an impact on the dynamic rupture processes: damage generation and earthquake rupture are coupled phenomena. A better knowledge of the dynamic damage processes can thus truly improve our understanding of the physics of earthquakes, and hence help to better predict strong motion and earthquake hazard. More...

Sustainable Resource Development

Sustainable Resource Development

The Himalayas hold the promise of enormous opportunities for local communities and the nations to which they belong, but their rich and varied resources are being developed against a backdrop of rapid cultural and environmental change. Geoscience holds the key to understanding these resources, and their effective and responsible development.  More...

News from the Earth Sciences

Bookmark and Share

Precambrian Research Group


The Precambrian is the informal name for the first 90% of Earth history during which life began its incredibly long journey towards biological complexity. 


This journey culminated in the appearance and diversification of animals between about 750 and 540 million years ago. Sedimentary rocks become increasingly scarce the further back in time one looks. For this reason, Precambrian studies are multidisciplinary by necessity, piecing together clues from a range of fields: geochemistry, palaeobiology, biochemistry, sedimentology, genetics and a range of earth system models (atmospheric, ocean circulation, climate and biogeochemical).

Our research group primarily uses the chemical, mineral and isotopic composition of sedimentary rocks to reconstruct earth system evolution during the two billion year interval from the end of the Archaean Eon (about 2500 million years ago) to the beginning of the Phanerozoic Eon (about 540 million years ago). During this Proterozoic Eon, extraordinary perturbations occurred to our planet’s surface environment. Some disturbances were extreme but transient, such as the ‘Snowball Earth’ intervals of global glaciation. Others caused irreversible changes that shaped the modern earth system, such as the ‘Great Oxidation Event’ and the ‘Neoproterozoic Oxygenation Event’ without which we would not be here today.