UCL Ear Institute


Bizley Lab

Our research seeks to link the patterns of neural activity in auditory cortex to our perception of the world around us. While sounds within an environment, such as a person talking, may be clearly intelligible at their source, noisy and reverberant listening conditions often combine to degrade the intelligibility of the sound wave arriving at the ear. The sound wave that arrives at the ear results from the combination of all of the different sounds that exist in our surroundings. This complex sound wave is decomposed into individual frequency components by the cochlea and transmitted via the auditory nerve to the auditory brain via the auditory nerve. The challenge for the brain is then to separate different sound sources from one another in order that they can be identified or understood - a process also known as auditory scene analysis. The brain must regroup the sound elements that arose from each individual source. Different sources can be desribed according to their characteristics - they might have a particular pitch, or a characteristic timbre. Our research falls into three broad themes:

How are perceptual features of sounds, such as pitch, timbre or location in space encoded by neurons within auditory cortex?
How do neurons in auditory cortex create 'invariant' perceptions?
When and how does what we see influence how we perceive sound?

Our research methods combine human and non-human psychophysics, computational modelling and behavioural neurophysiology. Since attentional state, behavioural context and even the presence of visual stimuli can modulate or drive activity in auditory cortex, we believe that auditory cortical neurons should not be seen simply as static filters tuned to detect particular acoustic features and that visualising neural and behavioural sensitivity simultaneously is key to understanding how neurons in auditory cortex support sound perception.

Funded by

Royal Society, BBSRC, Wellcome Trust, Deafness Research UK