prof jonathan knowles
Research
Themes
- Prof
- Jonathan
- Campbell
- Knowles
- Prof Jonathan Knowles
- Tel: 020 3456 1189
- Ex: 020 3456 1189
- Fax: 020 3456 1227
- j.knowles@ucl.ac.uk
- Website
- https://iris.ucl.ac.uk/iris/extResource/image/01/JCKNO52
- 1995-11-01
- 794
- 109
- UCL Eastman Dental Institute
- 256 Grays Inn Road
- London
- WC1X 8LD
- ACAPRO
- 1999-08-01
- 1
- Professor of Biomaterials Science
- IDF
- Biomaterials & Tissue Eng
- ID
- Eastman Dental Institute
- 1995-11-01
Research Summary
My academic strengths lie in my research. This is reflected in my ranking of 473/3936 (as of 11/05/12) in the scientist rankings for Materials Science. This also places me as the highest ranked Materials Scientist in UCL with over 4500 citations and an H-index of 37. I have for the past 15 years pursued the development of novel materials for hard and soft tissue regeneration.
A significant proportion of my work focusses on soluble glasses and is proving very successful and has attracted a significant amount of sponsorship from the research councils (BBSRC and EPSRC and MRC) and also industrially. The work has made some significant contributions to the understanding of the materials and in particular the degradation processes where the current view in the literature has been shown to incompletely model the degradation process occurring. This has important consequences if the material is to be used in vivo. The work has also developed the materials as novel antibacterial agents using copper and silver as potential antibacterial ions. The work has shown that whilst very high levels of the ions may be released, the bacteria which form colonies are able to form sacrificial layers to inhibit ion release. Recent work funded with two large grants by the EPSRC and collaboration with the Universities of Kent and Warwick has seen further developments of the glasses in sol-gel form and also applied a largoe portfolio of high end techniques such as NMR and neutron diffraction. This work has had an unprecedented output with almost 50 papers in three years and this includes some of the highest impact factor papers, including Advanced Materials and Advanced Functional Materials.
- 698
- Craniofacial development and muscle regeneration
- 6058
- Development of new injectable adhesive composites for bone repair
- 5433
- Glass vectors for in-situ radiotherapy
- 1735
- Materials for hard and soft tissue regneration
Application of high-strength biodegradable polyurethanes containing different ratios of biobased isomannide and poly (Ïμ-caprolactone) diol
Bone formation controlled by biologically relevant inorganic ions: role and controlled delivery from phosphate-based glasses.
Bone formation controlled by biologically relevant inorganic ions: Role and controlled delivery from phosphate-based glasses
Novel Poly(3-hydroxyoctanoate)/Poly(3-hydroxybutyrate) blends for medical applications
Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: Bonding to titanium and scanning electron microscopy
High strength re-mineralizing, antibacterial dental composites with reactive calcium phosphates
Hydroxyapatite, fluor-hydroxyapatite and fluorapatite produced via the sol-gel method: Bonding to titanium and scanning electron microscopy
Invalid Data from feed!
- Atomic force microscopy
- Cell culture
- Craniofacial disease
- FPLC/HPLC
- FTIR
- Glass melting
- Image analysis
- Materials science
- Microspectroscopy
- Raman
- Thermal analysis
- X-ray diffraction
- degradable materials
- RSHAH13
- dr rishma shah
- ATILO32
- dr antonio tilocca
- DASPR40
- dr dave spratt
- AYOUN32
- dr anne young
- NHUNT26
- prof nigel hunt
- JDARR17
- prof jawwad darr
- 2483
- Juha-Pekka Nuutinen

