prof david price

Profile Image

Research
Themes

Contacts
  • Prof
  • David
  • Price
  • Prof David Price
  • Tel: 020 7679 8581
  • Ex: 37083
  • d.price@ucl.ac.uk
  • Website
  • https://iris.ucl.ac.uk/iris/extResource/image/01/GDPRI11
  • 1983-09-01
Address
  • 570
  • Office of Vice-Provost (Research)
  • UCL
  • 2 Taviton St
  • London
  • WC1H 0BT
Joined UCL
  • 1983-09-01

Research Summary

Price's early work was in the field of crystallography and mineralogy. This work created the foundation of his interest in the mineralogy of the deep Earth, and the factors which determine crystal structures. Three notable studies included:

(i) The use of the transmission electron microscope to identify the spinel and beta-phase polymorphs of Mg2SiO4 in shocked meteorites, and the determination of the high strain rate mechanisms of the olivine to spinel, and spinel to beta-phase transformations. This work i ncluded the description of the first natural occurrence of beta-Mg2SiO4, which he named wadsleyite, and which is  the major constituent of the upper part (400km to 550km depth) of t he transition zone of the Earth’s mantle.

 (ii) The determination of the crystal structure of the as-synthesised silicalite (the pure Si analogue of the zeolite ZSM-5, which is the catalyst that underpins the multimillion-pound petroleum refinement industry).


(iii) The spinel and beta-phase polymorphs of Mg2SiO4 are “spinelloids”, and are polytypes (structures made of the same “modules” but stacked in differing ways), as are the zeolites ZSM-5 and ZSM-11. In an attempt to establish the factors that determined the relative stabilities of polytypic stacking arrangements, Price developed a model of polytypism (and polysomatism) based on the ANNNI and related Ising spin models.

These crystallographic studies led Price to use and develop atomistic simulations to study the energetics and stability of major Earth-forming minerals. Seventeen years ago, Price was the first to use quantum mechanical molecular dynamics methods to study mantle-forming phases, and this led to the first applications of this method to the study of the high P/T elastic and seismic properties of silicates, and which more recently enable his group to reconcile the previously seismically enigmatic D” zone at the base of the mantle (depth ~2600km to 2880km) with the properties of the recently discovered post-perovskite phase. Price has since extended the application of quantum mechanical molecular dynamics methods to the study of the high pressure melting of iron and its alloys, and to the study of the properties of liquid iron under conditions relevant to the Earth’s core.

Research Activities
  • 412
  • Atomistic simulation of silicates
  • 409
  • Crystal Structure Stability
  • 413
  • Life and planetary evolution
  • 407
  • Nanostructure in iron oxides
  • 410
  • Origins of polytypism
  • 411
  • Quantum mechanical Molecular dynamics and high P/T phase stability
  • 408
  • Shock transitions in silicates
1 - 10 of 278 Publications Page: 1 of 28 Next »

Ref Type: Chapter
Publisher: Shire Publications Ltd

Ref Type: Working discussion paper
Publisher: Office of the UCL Vice-Provost (Research), UCL

Ref Type: Working discussion paper
Publisher: OVPR

Ref Type: Journal article
Publisher: PERGAMON-ELSEVIER SCIENCE LTD

Ref Type: Journal article
Publisher: CHINA UNIV GEOSCIENCES

Ref Type: Journal article
Publisher: CUSHMAN FOUNDATION FORAMINIFERAL RES

Academic Background

  • Award Year
    Qualification
     
    Institution
  • 1981
    MA
    Master of Arts
    University of Cambridge
  • 1981
    PhD
    Doctor of Philosophy
    University of Cambridge
  • 1977
    BA
    Bachelor of Arts
    University of Cambridge

Biography

G. David PRICE is Vice-Provost (Research) at UCL, and was formerly Executive Dean of the Mathematical and Physical Sciences Faculty and Professor of Mineral Physics in the Dept of Earth Sciences. David has an undergraduate degree and a PhD from the University of Cambridge. He was a Fulbright-Hayes Scholar and Research  Associate at the University of Chicago and a Research Fellow at Clare College Cambridge, before coming to UCL in 1983 as a Royal Society University Research Fellow.

He was one of the first to establish the now major field of computational mineral physics, and has  published over 220 research papers. He was awarded the Schlumberger Medal of the Mineralogical Society of Great Britain in 1999; the Murchison Medal of the Geological Society of London in 2002; and in 2006 he was awarded the Louis Néel Medal of the European Geosciences Union for “establishing the importance of computational mineral physics in Earth sciences and for outstanding contributions to the physics of the Earth's core". He is a Member of the Academia Europaea  and an Elected Fellow of the American Geophysical Union and of the Mineralogical Society of America. He has been an editor of “Earth and Planetary Science Letters” (2005-8); President of the Mineralogical Society of Great Britain and Ireland (2004-6); and was a member of the UK’s HEFCE RAE2008 sub-panel on Earth and Environmental Sciences.

He is the chair the HEFCE REF2014 sub-panel on Earth and Environmental Sciences. He is a Council Member of the STFC, a non-executive Director the North Middlesex University Hospital NHS Trust, and Chair of Governors of the UCL Academy School, Camden.

Additional Information
  • CMR
  • Earth History
  • Earth's core
  • Earth's mantle
  • compuational science
  • flood basalts
  • impacts
  • mass extinction
  • mineral physics
  • molecular dynamics
  • quantum mechanics
Collaborators
  • MFADE06
  • dr marcelle boudagher-fadel